Tag Archives: roller shaft

China high quality OEM Core Competencies Steel Roller High Temperature Resistant Shaft Machine Part Steel Bar Drive Shaft Drive Line

Product Description

Company  Profile

Established in 2009, HangZhou CZPT Trading Co., Ltd is a professional supplier for conveyor parts, located in ZHangZhoug province. We focus on supplying a variety of conveyor parts, including conveyor tubes, conveyor frames, conveyor rollers, bearing housings and so forth.

With our professional technology R&D team, and experienced quality control department, our products have been awarded the ISO9001 Quality Management System Standard and our main markets are in America, Europe, Asia and Australia.

Factory advantage

Professional and experienced technology team
All products inspected before shipping with reasonable prices
Low MOQ and free sample
We are audited by SGS and passed the ISO9001:2008 certification

Industries service

Industrial machine
Electronic and communication
Oil, gas,mining and petroleum
Construction industry
Equipment CNC Machining Center, CNC Lathes, CNC Milling Machines, Punching and drilling machines,  Stamping machines
Precision Processing CNC machining, CNC turning and milling, laser cutting, drilling, grinding, bending, stamping, welding

 

 

Roller size

 No. Standard Diameter Length Range
(mm)
Bearing Type
Min-Max
Shell Thickness of Roller
   mm Inch      
1 63.5 2 1/2 150-3500 203 204 3.0mm-4.0mm
2 76 3 150-3500 204 3.0mm-4.5mm
3 89 3 1/3 150-3500 204 205 3.0mm-4.5mm
4 102 4 150-3500 3.2mm-4.5mm
5 108 4 1/4 150-3500 306 3.5mm-4.5mm
6 114 4 1/2 150-3500 306 3.5mm-4.5mm
7 127 5 150-3500 306 3.5mm-5.0mm
8 133 5 1/4 150-3500 305 306 3.5mm-5.0mm
9 140 5 1/2 150-3500 306 307 3.5mm-5.0mm
10 152 6 150-3500 4.0mm-5.0mm
11 159 6 1/4 150-3500 4.0mm-5.0mm
12 165 6 1/2 150-3500 307 308 4.5mm-6.0mm
13 177.8 7 150-3500 309 4.5mm-6.0mm
14 190.7 7 1/2 150-3500 309 310 4.5mm-7.0mm
15 194 7 5/8 150-3500 309 310 4.5mm-8.0mm
16 219 8 5/8 150-3500 4.5mm-8.0mm

Advantage:
1.The life time: More than 50000 hours
2. TIR (Total Indicator Runout)
0.5mm (0.0197″) for Roll Length 0-600mm
0.8mm (0.571″) for Roll Length 601-1350mm
1.0mm (0. 0571 “) for Roll Length over 1350mm
3.Shaft Float≤0.8mm
4..Samples for testing are available.
5. Lower resistance
6. Small maintain work
7. High load capability
8. Dust proof & water proof

 

CONVRYOR ROLLER SHAFTS

We can produce roller shafts and We do customeized 
Product Size:φ10mm – 70mm
Max Length: 3000mm
Surface Tolerance: g6
Surface Roughness:0.8mm

 

Specification ASTM A108   AS1443
Steel Grade  Q235B,C1571,C1045(we can also do other steel grade per your requirments)
Size Φ18mm-φ62mm
Diameter Tolerance  ISO286-2,H7/H8
Straightness 2000:1

O.D  63.5-219.1mm
W .T  0.45-20mm 
Length  6–12m
Standard  SANS 657/3,ASTM 513,AS 1163,BS6323,EN10305
Material  Q235B, S355,S230,C350,E235 etc. 
Technique  Welded,Seamless
Surface oiled ,galvanized or painted with all kinds of colors according to client’s request.
 Ends  1.Plain ends,
 2.Threading at both side with plastice caps 
 3.Threading at both side with socket/coupling.
 4.Beveled ends, and so on
 Packing  1.Water-proof plastic cloth,
 2.Woven bags, 
 3.PVC package, 
 4.Steel strips in bundles 
 5.As your requirment
Usage   1.For low pressure liquid delivery such as water,gas and oil.
 2.For construction
 3.Mechanical equipment
 4.For Furniture 
Payment&Trade Terms  1.Payment : T/T,L/C, D/P, Western union 
 2.Trade Terms:FOB/CFR/CIF
 3.Minimum quantity of order : 10 MT (10,000KGS)
 Delivery Time  1.Usually,within10-20days after receiving your down payment.
 2.According to the order quantity 

 

Conveyor Roller Tube

Conveyor Roller Tube

Specification SANS657/3,ASTM513,AS1163,BS6323,EN10305 or equivalent international standard.
Steel grade S355/S230,C350,E235,Q235B
Sizes 63.5mm-219.1mm ect
Ovality tolerance of body ≤0.4mm(60.3mm-152.4mm)
≤0.5mm(159MM-168.3mm)
≤0.6mm(178mm-219mm)
Straightness 2000:1

 

 

 

if you are interesting in our products or want any further information, please feel free to contact us!

I am looking CZPT to your reply.

Best regards
Ruth
HangZhou CZPT TRADING CO., LTD 
1801 CZPT Building, No.268 Xierhuan Road, HangZhou City, ZHangZhoug Province, China

Surface Tolerance: G6
Surface Roughness: 0.8
Max Length: Max 3000mm
Standard: ASTM A108
Size: Od18mm—62mm
Steel Grade: C1018 C1020
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What maintenance practices are essential for prolonging the lifespan of driveline components?

Implementing proper maintenance practices is crucial for ensuring the longevity and optimal performance of driveline components. Regular maintenance helps identify potential issues, prevent major failures, and prolong the lifespan of driveline components. Here are some essential maintenance practices for prolonging the lifespan of driveline components:

1. Regular Inspections:

Performing regular visual inspections of driveline components is essential for detecting any signs of wear, damage, or misalignment. Inspect the driveline components, including driveshafts, universal joints, CV joints, differentials, and transmission components, for any cracks, leaks, excessive play, or unusual noise. Identifying and addressing issues early can prevent further damage and potential driveline failure.

2. Lubrication:

Proper lubrication of driveline components is crucial for minimizing friction, reducing wear, and ensuring smooth operation. Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate type and grade of lubricant. Regularly check and maintain the lubrication levels in components such as bearings, gears, and joints to prevent excessive heat buildup and premature wear.

3. Fluid Changes:

Fluids play a vital role in driveline component performance and longevity. Regularly change fluids, such as transmission fluid, differential oil, and transfer case fluid, according to the manufacturer’s recommended intervals. Over time, these fluids can become contaminated or break down, leading to compromised performance and increased wear. Fresh fluids help maintain proper lubrication, cooling, and protection of driveline components.

4. Alignment and Balancing:

Proper alignment and balancing of driveline components are essential for minimizing vibration, reducing stress, and preventing premature wear. Periodically check and adjust the alignment of driveshafts, ensuring they are properly aligned with the transmission and differential. Additionally, balance rotating components, such as driveshafts or flywheels, to minimize vibrations and prevent excessive stress on driveline components.

5. Torque Check:

Regularly check and ensure that all driveline components are properly torqued according to the manufacturer’s specifications. Over time, fasteners can loosen due to vibrations or thermal expansion and contraction. Loose fasteners can lead to misalignment, excessive play, or even component failure. Regular torque checks help maintain the integrity and performance of the driveline system.

6. Maintenance of Supporting Systems:

Driveline components rely on the proper functioning of supporting systems, such as cooling systems and electrical systems. Ensure that cooling systems are functioning correctly, as overheating can cause driveline components to degrade or fail. Additionally, regularly inspect electrical connections, wiring harnesses, and sensors to ensure proper communication and operation of driveline components.

7. Proper Driving Techniques:

The way a vehicle is driven can significantly impact the lifespan of driveline components. Avoid aggressive driving, sudden acceleration, and excessive braking, as these actions can put undue stress on the driveline components. Smooth and gradual acceleration, proper shifting techniques, and avoiding excessive load or towing capacities help minimize wear and prolong component life.

8. Service and Maintenance Records:

Maintain comprehensive service and maintenance records for the driveline components. Keep track of all maintenance tasks, repairs, fluid changes, and inspections performed. These records help ensure that maintenance tasks are performed on time, provide a history of component performance, and assist in diagnosing any recurring issues or patterns.

By following these maintenance practices, vehicle owners can prolong the lifespan of driveline components, minimize the risk of failures, and ensure optimal performance and reliability of the driveline system.

pto shaft

Can you provide real-world examples of vehicles and machinery that use drivelines?

Drivelines are used in a wide range of vehicles and machinery across various industries. These driveline systems are responsible for transmitting power from the engine or motor to the wheels or driven components. Here are some real-world examples of vehicles and machinery that utilize drivelines:

1. Automobiles:

Drivelines are integral to automobiles, providing power transmission from the engine to the wheels. Various driveline configurations are used, including:

  • Front-Wheel Drive (FWD): Many compact cars and passenger vehicles employ front-wheel drive, where the driveline powers the front wheels.
  • Rear-Wheel Drive (RWD): Rear-wheel drive is commonly found in sports cars, luxury vehicles, and trucks, with the driveline powering the rear wheels.
  • All-Wheel Drive (AWD) and Four-Wheel Drive (4WD): AWD and 4WD drivelines distribute power to all four wheels, enhancing traction and stability. These systems are used in SUVs, off-road vehicles, and performance cars.

2. Trucks and Commercial Vehicles:

Trucks, including pickup trucks, delivery trucks, and heavy-duty commercial vehicles, rely on drivelines to transmit power to the wheels. These drivelines are designed to handle higher torque and load capacities, enabling efficient operation in various work environments.

3. Agricultural Machinery:

Farm equipment, such as tractors, combines, and harvesters, utilize drivelines to transfer power from the engine to agricultural implements and wheels. Drivelines in agricultural machinery are engineered to withstand demanding conditions and provide optimal power delivery for field operations.

4. Construction and Earthmoving Equipment:

Construction machinery, including excavators, bulldozers, loaders, and graders, employ drivelines to power their movement and hydraulic systems. Drivelines in this sector are designed to deliver high torque and endurance for heavy-duty operations in challenging terrains.

5. Off-Road and Recreational Vehicles:

Off-road vehicles, such as ATVs (All-Terrain Vehicles), UTVs (Utility Task Vehicles), and recreational vehicles like dune buggies and sand rails, rely on drivelines to provide power to the wheels. These drivelines are engineered to handle extreme conditions and offer enhanced traction for off-road adventures.

6. Railway Locomotives and Rolling Stock:

Drivelines are utilized in railway locomotives and rolling stock to transmit power from the engines to the wheels. These driveline systems are designed to efficiently transfer high torque and provide reliable propulsion for trains and other rail vehicles.

7. Marine Vessels:

Drivelines are employed in various types of marine vessels, including boats, yachts, and ships. They transmit power from the engines to the propellers or water jets, enabling propulsion through water. Marine drivelines are designed to operate in wet environments and withstand the corrosive effects of saltwater.

8. Industrial Machinery:

Industrial machinery, such as manufacturing equipment, conveyor systems, and material handling machines, often utilize drivelines for power transmission. These drivelines enable the movement of components, products, and materials within industrial settings.

9. Electric and Hybrid Vehicles:

Drivelines are a crucial component in electric vehicles (EVs) and hybrid vehicles (HVs). In these vehicles, the drivelines transmit power from electric motors or a combination of engines and motors to the wheels. Electric drivelines play a significant role in the efficiency and performance of EVs and HVs.

These are just a few examples of vehicles and machinery that utilize drivelines. Driveline systems are essential in a wide range of applications, enabling efficient power transmission and propulsion across various industries.

pto shaft

Which industries and vehicles commonly use drivelines for power distribution?

Drivelines are widely used in various industries and vehicles for power distribution. They play a crucial role in transmitting power from the engine or power source to the driven components, enabling motion and torque transfer. Here’s a detailed explanation of the industries and vehicles that commonly utilize drivelines for power distribution:

1. Automotive Industry: The automotive industry extensively utilizes drivelines in passenger cars, commercial vehicles, and off-road vehicles. Drivelines are a fundamental component of vehicles, enabling power transmission from the engine to the wheels. They are found in a range of vehicle types, including sedans, SUVs, pickup trucks, vans, buses, and heavy-duty trucks. Drivelines in the automotive industry are designed to provide efficient power distribution, enhance vehicle performance, and ensure smooth acceleration and maneuverability.

2. Agricultural Industry: Drivelines are essential in the agricultural industry for various farming machinery and equipment. Tractors, combines, harvesters, and other agricultural machinery rely on drivelines to transfer power from the engine to the wheels or tracks. Drivelines in agricultural equipment often incorporate power take-off (PTO) units, allowing the connection of implements such as plows, seeders, and balers. These drivelines are designed to handle high torque loads, provide traction in challenging field conditions, and facilitate efficient farming operations.

3. Construction and Mining Industries: Drivelines are extensively used in construction and mining equipment, where they enable power distribution and mobility in heavy-duty machinery. Excavators, bulldozers, wheel loaders, dump trucks, and other construction and mining vehicles rely on drivelines to transfer power from the engine to the wheels or tracks. Drivelines in these industries are designed to withstand rigorous operating conditions, deliver high torque and traction, and provide the necessary power for excavation, hauling, and material handling tasks.

4. Industrial Equipment: Various industrial equipment and machinery utilize drivelines for power distribution. This includes material handling equipment such as forklifts and cranes, industrial trucks, conveyor systems, and industrial vehicles used in warehouses, factories, and distribution centers. Drivelines in industrial equipment are designed to provide efficient power transmission, precise control, and maneuverability in confined spaces, enabling smooth and reliable operation in industrial settings.

5. Off-Road and Recreational Vehicles: Drivelines are commonly employed in off-road and recreational vehicles, including all-terrain vehicles (ATVs), side-by-side vehicles (UTVs), dirt bikes, snowmobiles, and recreational boats. These vehicles require drivelines to transfer power from the engine to the wheels, tracks, or propellers, enabling off-road capability, traction, and water propulsion. Drivelines in off-road and recreational vehicles are designed for durability, performance, and enhanced control in challenging terrains and recreational environments.

6. Railway Industry: Drivelines are utilized in railway locomotives and trains for power distribution and propulsion. They are responsible for transmitting power from the locomotive’s engine to the wheels or driving systems, enabling the movement of trains on tracks. Drivelines in the railway industry are designed to handle high torque requirements, ensure efficient power transfer, and facilitate safe and reliable train operation.

7. Marine Industry: Drivelines are integral components in marine vessels, including boats, yachts, ships, and other watercraft. Marine drivelines are used for power transmission from the engine to the propellers or water jets, providing thrust and propulsion. They are designed to withstand the corrosive marine environment, handle high torque loads, and ensure efficient power transfer for marine propulsion.

These are some of the industries and vehicles that commonly rely on drivelines for power distribution. Drivelines are versatile components that enable efficient power transmission, mobility, and performance across a wide range of applications, contributing to the functionality and productivity of various industries and vehicles.

China high quality OEM Core Competencies Steel Roller High Temperature Resistant Shaft Machine Part Steel Bar Drive Shaft Drive LineChina high quality OEM Core Competencies Steel Roller High Temperature Resistant Shaft Machine Part Steel Bar Drive Shaft Drive Line
editor by CX 2023-09-28

China Best Sales Shaft CNC Machining Shaft Flange Shaft Roller Shaft Drive Shaft Gear Shaft Spline Shaft Logistics Equipment Shaft Conveyor Shaft Coater Shaft Drive Line

Product Description

Product Description

rotation axis of rotation is due to the fact that as an object rotates, its points move in circles, and the centers of these circles lie on the same line.
Rotation is a common type of motion. When an object rotates, its points move in circles. The centers of these circles lie on the same line. This line is called the axis of rotation. Doors, Windows, grinding wheels, motor rotors, etc., have fixed rotating shaft, can only be rotated, but not translational. Several forces act on a body, and their rotational action on the body depends on the algebraic sum of their torques. If the algebraic sum of moments is equal to zero, the object will rotate uniformly with the original angular velocity or stay at rest.
The drive shaft is a rotating body with high speed and little support, so its dynamic balance is very important. The general drive shaft before leaving the factory must enter the action balance test, and the balance machine has been adjusted. For front-engine rear-wheel drive cars is the shaft that transfers the rotation of the transmission to the main reducer, which can be several segments, and the segments can be connected by universal joints.

Hebe (ZheJiang ) Industrial Co., LTD was founded in 2018. The company covers an area of 1500 square meter and has 15 employees, including 1 designer and 2 CNC programmers. Heber Company specializes in providing all kinds of parts processing. The process includes CNC milling, CNC turning, CNC grinding, large CNC machining, Wire cutting, EDM machining. Our machining accuracy can reach 0.005mm. Surface grinding finish up to 0.8um.mirror polish is up to 0.4um.
 company provides parts processing for various industries. For example, packaging machinery, slitter machine, aerospace, electronic machinery, cigarette machine, gear machinery, automatic assembly machine, power tools, semiconductor equipment, automobile production line, automobile, motorcycle, bicycle, 3D printer, plastic machinery, robot and so on. We can provide zinc plating, nickel plating, oxidation, heat treatment, chrome plating, PVD, spray, spray paint, black phosphating and other surface treatment processes.
Hebe can also provide mechanical assembly work for customers. We have skilled fitters and assembly workers. We can complete detailed work from CNC machining to assembly. PLC program, electronic parts procurement, automation components procurement, etc. We have assembled non – target automation equipment, slitting machines, packaging machines, etc.

Equipment name CNC lathe /CNC milling machine /CNC grinder /EDM/ vertical milling machine/linear cutting /4-5 axis CNC milling machine/large size CNC milling machine/Laser cutting/CNC Bending machine
Testing instrument Inside diameter measurement/outside diameter measurement/caliper/height measurement/CMM measurement
Material Steel/Aluminium alloy/ copper/ Alloy steel /Titanium alloy/ nylon /PTFE  /Stainless steel /mold steel/ Brass/copper/tungsten steel/high strength stainless steel
 
Surface treatment Polishing/electroplating/oxidation/spraying/nitriding/phosphating/heat treatment
Product packaging 1200x800mm tray/500x500x500mm carton/Customizable wooden cases/Designable packaging scheme
Customer industry Mechanical equipment/aerospace/automobile production line/automation equipment/bicycle/motorcycle/energy/chemical equipment/industrial electrical appliances
Software capability CAD 2007/ UG 10.0/ Solidwork
Delivery time Sample5-10 days/ Mass production 20-45days
Payment clause 30% advance payment +70% delivery payment T/T 
MOQ 1PCS

 

Packaging & Shipping

 

 

Application: Fastener, Auto and Motorcycle Accessory, Hardware Tool, Machinery Accessory
Standard: GB, China GB Code
Surface Treatment: Electroplating
Production Type: Batch Production
Machining Method: CNC Turning
Material: Steel, Alloy, Aluminum
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What factors should be considered when designing an efficient driveline system?

Designing an efficient driveline system involves considering various factors that contribute to performance, reliability, and overall system efficiency. Here are the key factors that should be considered when designing an efficient driveline system:

1. Power Requirements:

The power requirements of the vehicle play a crucial role in designing an efficient driveline system. It is essential to determine the maximum power output of the engine and ensure that the driveline components can handle and transfer that power efficiently. Optimizing the driveline for the specific power requirements helps minimize energy losses and maximize overall efficiency.

2. Weight and Packaging:

The weight and packaging of the driveline components have a significant impact on system efficiency. Lightweight materials and compact design help reduce the overall weight of the driveline, which can improve fuel efficiency and vehicle performance. Additionally, efficient packaging ensures that driveline components are properly integrated, minimizing energy losses and maximizing available space within the vehicle.

3. Friction and Mechanical Losses:

Minimizing friction and mechanical losses within the driveline system is crucial for achieving high efficiency. Frictional losses occur at various points, such as bearings, gears, and joints. Selecting low-friction materials, optimizing lubrication systems, and implementing efficient bearing designs can help reduce these losses. Additionally, employing advanced gear designs, such as helical or hypoid gears, can improve gear mesh efficiency and reduce power losses.

4. Gear Ratios and Transmission Efficiency:

The selection of appropriate gear ratios and optimizing transmission efficiency greatly impacts driveline efficiency. Gear ratios should be chosen to match the vehicle’s power requirements, driving conditions, and desired performance characteristics. In addition, improving the efficiency of the transmission, such as reducing gear mesh losses and enhancing hydraulic or electronic control systems, can contribute to overall driveline efficiency.

5. Aerodynamic Considerations:

Aerodynamics play a significant role in a vehicle’s overall efficiency, including the driveline system. Reducing aerodynamic drag through streamlined vehicle design, efficient cooling systems, and appropriate underbody airflow management can enhance driveline efficiency by reducing the power required to overcome air resistance.

6. System Integration and Control:

Efficient driveline design involves seamless integration and control of various components. Employing advanced control systems, such as electronic control units (ECUs), can optimize driveline operation by adjusting power distribution, managing gear shifts, and optimizing torque delivery based on real-time driving conditions. Effective system integration ensures smooth communication and coordination between driveline components, improving overall efficiency.

7. Environmental Considerations:

Environmental factors should also be taken into account when designing an efficient driveline system. Considerations such as emissions regulations, sustainability goals, and the use of alternative power sources (e.g., hybrid or electric drivetrains) can influence driveline design decisions. Incorporating technologies like regenerative braking or start-stop systems can further enhance efficiency and reduce environmental impact.

8. Reliability and Durability:

Designing an efficient driveline system involves ensuring long-term reliability and durability. Selecting high-quality materials, performing thorough testing and validation, and considering factors such as thermal management and component durability help ensure that the driveline system operates efficiently over its lifespan.

By considering these factors during the design process, engineers can develop driveline systems that are optimized for efficiency, performance, and reliability, resulting in improved fuel economy, reduced emissions, and enhanced overall vehicle efficiency.

pto shaft

How do drivelines enhance the performance of different types of vehicles?

Drivelines significantly contribute to enhancing the performance of different types of vehicles by optimizing power delivery, improving traction, and tailoring the driving characteristics to suit specific needs. Here’s a detailed explanation of how drivelines enhance performance in various vehicle types:

1. Passenger Cars:

In passenger cars, driveline configurations, such as front-wheel drive (FWD), rear-wheel drive (RWD), and all-wheel drive (AWD), play a crucial role in performance. Here’s how drivelines enhance performance in passenger cars:

  • FWD: Front-wheel drive systems provide better traction and stability, particularly in adverse weather conditions. FWD drivelines distribute weight more evenly over the front wheels, resulting in improved grip during acceleration and cornering.
  • RWD: Rear-wheel drive drivelines offer better weight distribution, allowing for improved handling and balanced performance. RWD vehicles typically exhibit better acceleration and a more engaging driving experience, especially in performance-oriented cars.
  • AWD: All-wheel drive drivelines deliver power to all four wheels, improving traction and stability in various driving conditions. AWD systems enhance performance by maximizing grip and providing optimal power distribution between the front and rear wheels.

2. Sports Cars and Performance Vehicles:

Driveline systems in sports cars and performance vehicles are designed to enhance acceleration, handling, and overall driving dynamics. Key features include:

  • Rear-Wheel Drive (RWD): RWD drivelines are often favored in sports cars for their ability to deliver power to the rear wheels, resulting in better weight transfer during acceleration and improved handling characteristics.
  • Performance-oriented AWD: Some high-performance vehicles employ advanced AWD systems that can variably distribute torque between the front and rear wheels. These systems enhance traction, stability, and cornering capabilities, allowing for superior performance on both dry and slippery surfaces.
  • Torque Vectoring: Certain driveline systems incorporate torque vectoring technology, which actively varies the torque distribution between wheels. This enables precise control during cornering, reducing understeer and enhancing agility and stability.

3. Off-Road Vehicles:

Drivelines in off-road vehicles are designed to provide exceptional traction, durability, and maneuverability in challenging terrains. Key features include:

  • Four-Wheel Drive (4WD) and All-Wheel Drive (AWD): 4WD and AWD drivelines are commonly used in off-road vehicles to improve traction on uneven surfaces. These drivelines distribute power to all wheels, allowing for better grip and enhanced off-road capability.
  • Differential Locks: Off-road drivelines often incorporate differential locks that can be engaged to lock the wheels on an axle together. This feature ensures that power is evenly distributed to all wheels, maximizing traction and overcoming challenging obstacles.
  • High Ground Clearance: Drivelines in off-road vehicles are designed to accommodate higher ground clearance, allowing for improved approach, departure, and breakover angles. This design feature enhances the vehicle’s ability to navigate over rough terrain without damaging the driveline components.

4. Trucks and Commercial Vehicles:

Drivelines in trucks and commercial vehicles are engineered to provide high torque delivery, durability, and efficiency. Key features include:

  • High Torque Handling: Drivelines in trucks and commercial vehicles are designed to handle high torque outputs from powerful engines, enabling efficient towing, hauling, and overall performance.
  • Transmission Options: Drivelines in trucks often feature transmissions with multiple gear ratios, allowing drivers to select the appropriate gear for different load conditions. This enhances performance, fuel efficiency, and overall drivability.
  • Efficient Power Transfer: Drivelines in commercial vehicles focus on maximizing power transfer efficiency, minimizing energy losses, and optimizing fuel economy. This is achieved through the use of efficient transmission designs, low-friction components, and advanced control systems.

5. Electric and Hybrid Vehicles:

Drivelines in electric and hybrid vehicles play a crucial role in delivering power from the electric motor(s) to the wheels. Key features include:

  • Instant Torque: Electric drivelines offer instant torque delivery, providing quick acceleration andresponsive performance. This enhances the driving experience and allows for swift overtaking and merging.
  • Regenerative Braking: Electric and hybrid drivelines can incorporate regenerative braking systems, which convert kinetic energy during braking into electrical energy. This improves overall efficiency and extends the vehicle’s range.
  • Multi-Motor Systems: Some electric and hybrid drivelines utilize multiple motors to drive different axles or wheels independently. This enables advanced torque vectoring and enhances handling, stability, and traction control.

These are just a few examples of how drivelines enhance the performance of different types of vehicles. Driveline configurations, technologies, and engineering considerations are tailored to each vehicle type, optimizing power delivery, handling, traction, and other performance characteristics specific to their intended use and market segment.

pto shaft

Can you explain the components of a typical driveline and their specific roles?

A typical driveline consists of several components that work together to transmit power from the engine or power source to the driven components, enabling motion and providing torque. Each component plays a specific role in the driveline system. Here’s an explanation of the key components of a typical driveline and their specific roles:

1. Engine: The engine is the power source of the driveline system. It converts fuel energy (such as gasoline or diesel) into mechanical power by the process of combustion. The engine generates rotational power, which is transferred to the driveline to initiate power transmission.

2. Transmission: The transmission is responsible for selecting the appropriate gear ratio and transmitting power from the engine to the driven components. It allows the driver or operator to control the speed and torque output of the driveline. In manual transmissions, the driver manually selects the gears, while in automatic transmissions, the gear shifts are controlled by the vehicle’s computer system.

3. Drive Shaft: The drive shaft, also known as a propeller shaft or prop shaft, is a tubular component that transmits rotational power from the transmission to the differential or the driven components. It typically consists of a hollow metal tube with universal joints at both ends to accommodate variations in driveline angles and allow for smooth power transfer.

4. Differential: The differential is a gearbox-like component that distributes power from the drive shaft to the wheels or driven axles while allowing them to rotate at different speeds, particularly during turns. It compensates for the difference in rotational speed between the inner and outer wheels in a turn, ensuring smooth and controlled operation of the driveline system.

5. Axles: Axles are shafts that connect the differential to the wheels. They transmit power from the differential to the wheels, allowing them to rotate and generate motion. In vehicles with independent suspension, each wheel typically has its own axle, while in solid axle configurations, a single axle connects both wheels on an axle assembly.

6. Clutch: In manual transmission systems, a clutch is employed to engage or disengage the engine’s power from the driveline. It allows the driver to smoothly engage the engine’s power to the transmission when shifting gears or coming to a stop. By disengaging the clutch, power transmission to the driveline is temporarily interrupted, enabling gear changes or vehicle stationary positions.

7. Torque Converter: Torque converters are used in automatic transmissions to transfer power from the engine to the transmission. They provide a fluid coupling between the engine and transmission, allowing for smooth power transmission and torque multiplication. The torque converter also provides a torque amplification effect, which helps in vehicle acceleration.

8. Universal Joints: Universal joints, also known as U-joints, are flexible couplings used in the driveline to accommodate variations in angles and misalignments between the components. They allow for the smooth transmission of power between the drive shaft and other components, compensating for changes in driveline angles during vehicle operation or suspension movement.

9. Constant Velocity Joints (CV Joints): CV joints are specialized joints used in some drivelines, particularly in front-wheel-drive and all-wheel-drive vehicles. They enable smooth power transmission while accommodating variations in angles and allowing the wheels to turn at different speeds. CV joints maintain a constant velocity during rotation, minimizing vibrations and power losses.

10. Transfer Case: A transfer case is a component found in four-wheel-drive and all-wheel-drive systems. It transfers power from the transmission to both the front and rear axles, allowing all wheels to receive power. The transfer case usually includes additional components such as a multi-speed gearbox and differential mechanisms to distribute power effectively to the axles.

These are the key components of a typical driveline and their specific roles. Each component is crucial in transferring power, enabling motion, and ensuring the smooth and efficient operation of vehicles and equipment.

China Best Sales Shaft CNC Machining Shaft Flange Shaft Roller Shaft Drive Shaft Gear Shaft Spline Shaft Logistics Equipment Shaft Conveyor Shaft Coater Shaft Drive LineChina Best Sales Shaft CNC Machining Shaft Flange Shaft Roller Shaft Drive Shaft Gear Shaft Spline Shaft Logistics Equipment Shaft Conveyor Shaft Coater Shaft Drive Line
editor by CX 2023-08-29

China Custom Working Width 3m Power Driven Harrow for Farm Tractor 110-160HP Disc Pto True Vertical Tillage Powered Gearbox Driven Rotary Harrow Roller Heavy Duty Tiller CE bush hog pto shaft

Product Description

Made in China, Sold to the world
Versatile, Easy, Affordable, Powerful, Reliable

 

1BQ series Heavy duty power driven harrow product description

1BQ series Heavy duty power driven harrow product description
1BQ series Heavy duty power driven harrow is a cooperation between ZheJiang Euro Star Machinery Manufacture Co., Ltd. and Italian CMR Group Company, specially designed and produced for complex soil conditions, with reasonable structure, reliable performance, quick tool change, overload protection and other advantages.
1BQ series Heavy duty power driven harrow can choose working width of 2-4M, and can be used with 80-160HP tractors. It has the advantages of good soil crushing effect, smooth ground after soil preparation, good moisture retention effect, no damage to soil structure and layering, and neat seedbed emergence rate. It is the first choice for farm managers.
1BQ series Heavy duty power driven harrow a very good finishing effect especially for the unbreakable large clods and moisture ditch that appear after deep ploughing. In terms of seedbed and seedbed finishing, the power-driven harrow is the best working machine at present. After finishing, it can meet the agronomic requirements of “flat, tidy, loose, broken, clean, and moisture content” of the land, providing perfect soil conditions for seed germination.

1BQ series Heavy duty power driven harrow product selling points
1. Strong soil crushing ability, specializing in unbreakable clods.
2. Strengthen the leveling board, which has a good finishing effect for the uneven land after deep ploughing. Ensure that the land is level and there is no moisture ditch.
3. Heavy-duty repression roller, the soil after finishing is CZPT on the top and the bottom is empty, so it can be directly sown, and the soil moisture is guaranteed to ensure that the seedbed emerges neatly.
4. Keep the soil structure layered. After deep ploughing, the straw and grass have been pressed into the soil. The horizontal rotating structure of the power-driven harrow and the characteristics of the knife shape will not turn the straw up, which is conducive to the rot and decomposition of the straw.
5. Adopt Italian CMR Group special transmission box, high-power spiral bevel gear design, strong bearing capacity.
6. The plug-in quick-change blade structure is convenient and quick to replace the rake.
7. Shafts and gears are made of titanium alloy and processed by advanced heat treatment process.
8. The 16mm thick alloy steel harrow blade is used, which has better wear resistance and strength after special treatment.
9. The high-density drum design is adopted, and more than 2 sets of drums are added to the common drive harrow, which improves the soil crushing effect.
10. The soil after deep ploughing will form a good seedbed and seedbed, and improve the neat emergence rate in the later stage.
11. Strengthen the gear box setting, strong and durable.
12. Primary transmission of main transmission box with higher strength.
13. Super large bearing is selected to reduce the failure rate.
14. The intermediate gear spline shaft and the main drive spline shaft are thicker and more durable.
5.  The locking position of each group of gear plum CZPT cap and the large plum CZPT cap are locked, with simple structure and never loose.

1BQ series Heavy duty power driven harrow product parameters

Model 1BQ-2.0 1BQ-2.5 1BQ-3.0 1BQ-3.5 1BQ-4.0
Working width(mm) 2000 2500 3000 3500 4000
Working depth(mm) 50-200 50-200 50-200 50-200 50-200
No of Rotating combination(pc) 8 10 12 14 16
No of Scraper blade(pc) 16 20 24 28 32
weight(KG) 1200 1400 1620 1880 2080
Minimum power(HP) 80 HP 90 HP 110 HP 140 HP 160 HP
Biggest power(HP) 110 HP 125 HP 160 HP 210 HP 250 HP
Overall dimension(mm) 2100*1500*1240 2600*1500*1240 3100*1500*1240 3600*1500*1240 4100*1500*1240
Linkage   Three-point suspension II type& III type     Three-point suspension II type& III type

1BQ series Heavy duty power driven harrow pictures show

1BZD series hydraulic folding heavy duty disc harrow product parameters

Model 1BZD-6.5 1BZD-7.5 1BZD-8.5 1BZD-9.0 1BZD-9.5
Diameter of disc(mm) 660 660 660 660 660
Weight (kg) 7000 7200 7500 7650 8300
Working width (mm) 6500 7500 8500 9000 9500
Working depth (mm) 180-220 180-220 180-220 180-220 180-220
Nos of disc blade 64 72 80 84 88
Matched power (hp) 300 350 400 400 500

1BZ series hydraulic heavy disc harrow product parameters

Model 1BZ-2.2 1BZ-2.5 1BZ-3.0 1BZ-3.4 1BZ-4.0 1BZ-5.3
Overall dimension(mm) 4820*2440*1340 5320*2880*1340 5320*3320*1340 5820*3760*1340 5820*4320*1340 6000*5500*1450
Working width(mm) 2200 2500 3000 3400 4000 5300
Working depth(mm) 180-200
No of disc(pc) 20 24 28 32 36 48
Dia.of disc(mm) 660*6 660*6 660*6 660*6 660*6 660*6
Productivity(ha/h) 1.3 1.4 1.7 1.9 2.4 3-5
Matched power(hp) 80-100 100-120 100-120 120-150 130-150 150-200
Linkage Traction Traction Traction Traction Traction Traction

1BZF series hydraulic folding heavy duty disc harrow product parameters

Model 1BZF-5.3
Diameter of disc(mm) 660
Weight (kg) 5500
Working width (mm) 5300
Working depth (mm) 180-220
Nos of disc blade 48
Matched power (hp) 200-300

1BZT series hydraulic heavy disc harrow product parameters

Model 1BZT-6.0
Diameter of disc(mm) 910
Weight (kg) 11000
Working width (mm) 6000
Working depth (mm) 300-350
Maximum working angle 23
Nos of disc blade 40
Matched power (hp) 300-400

1BQD series hydraulic pressure contraposion folding light harrow product parameters

Model 1BQD-7.2
Diameter of disc(mm) 460
Weight (kg) 2920
Working width (mm) 7200
Working depth (mm) 100-150
Nos of disc blade 84
Matched power (hp) 120-150

1BJX series hanging medium-sized disc harrow product parameters

Model 1BJX-1.1 1BJX-1.3 1BJX-1.5 1BJX-1.7 1BJX-2.0 1BJX-2.2 1BJX-2.4 1BJX-2.5 1BJX-2.8 1BJX-3.0 1BJX-3.4
Working width(mm) 1100 1300 1500 1700 2000 2200 2400 2500 2800 3000 3400
Working depth (mm) 140 140 140 140 140 140 140 140 140 140 140
No. of disc (pc) 10 12 14 16 18 20 22 24 26 28 32
Dia. Of disc (mm) 560 560 560 560 560 560 560 560 560 560 560
Weight(kg) 320 340 360 420 440 463 604 660 700 1300 1400
Linkage Three-point suspension
Matched power (hp) 25-30 30-40 40 45 50-60 55-60 65-70 75 80 80 100

1BQX series hanging light duty disc harrow product parameters

Model 1BQX-1.1 1BQX-1.3 1BQX-1.5 1BQX-1.7 1BQX-2.0 1BQX-2.2 1BQX-2.3 1BQX-3.4 1BQX-5.0
Working width(mm) 1100 1300 1500 1700 2000 2200 2300 3400 5000
Working depth (mm) 100-140 100-140 100-140 100-140 100-140 100-140 100-140 100-140 100-140
No. of disc (pc) 12 14 16 18 20 22 24 42 60
Dia. Of disc (mm) 460 460 460 460 460 460 460 460 460
Weight(kg) 200 220 250 270 380 400 420 1150 1550
Linkage Three-point suspension Tractor traction
Matched power (hp) 12–18 15-18 20-25 25-30 35-40 40-45 55 80-100 120

1BQDX series hanging pair setting light duty disc harrow product parameters

Model 1BQDX-1.25 1BQDX-1.6 1BQDX-2.0 1BQDX-2.3 1BQDX-2.65 1BQDX-3.0
Working width(mm) 1250 1600 2000 2300 2650 3000
Working depth (mm) 50-150 50-150 50-150 50-150 50-150 50-150
No. of disc (pc) 16 20 24 28 32 36
Dia. Of disc (mm) 460 460 460 460 460 460
Weight(kg) 330 390 460 560 600 650
Linkage Three-point suspension
Matched power (hp) 35-40 40-45 50-60 55-70 60-80 80-90

Full range of disc harrow picture display

Full series of share plow, turnover plow, disc plow picture combination display

ES series disc blade Product parameters

Diameter Thickness Weight Plain Weight Notched
MM INCH MM INCH KG LBS KG LBS
300mm 12″ 3 1/8″ 1.6 3.5 1.1 2.4
330mm 13″ 3 1/8″ 1.8 4 1.2 2.6
360mm 14″ 3 1/8″ 2.3 4.9 1.9 4.1
410mm 16″ 3 1/8″ 3.2 7 2.7 5.9
460mm 18″ 3 1/8″ 4.3 9.5 3.8 8.4
460mm 18″ 3.5 1/7″ 4.6 10.2 4.1 9
510mm 20″ 3.5 1/7″ 5.8 12.7 5.6 11.5
510mm 20″ 4 2/13″ 6.5 14.4 5.8 12.7
560mm 22″ 4 2/13″ 8.1 18 7.5 16.5
560mm 22″ 4.5 2/11″ 9 20 8.5 18.7
560mm 22″ 5 1/5″ 9.5 21.6 9 19.8
560mm 22″ 6 15/64″ 12 26.5 11 24.2
610mm 24″ 5 1/5″ 11.3 25 10.5 23.1
610mm 24″ 6 15/64″ 14.2 31.5 13 28.6
660mm 26″ 5 1/5″ 14.1 31 13 28.6
660mm 26″ 6 15/64″ 17 37.5 15.8 34.8
660mm 26″ 7 9/32″ 20 43.5 18.5 40.7
660mm 26″ 8 5/16″ 23 51 21 46
710mm 28″ 6 15/64″ 20 44 18.5 40.7
710mm 28″ 7 9/32″ 23 50.6 21.5 46
710mm 28″ 8 5/16″ 26 57.2 24 52.1
760mm 30″ 8 5/16″ 29 64 28 61.5
760mm 30″ 10 3/8″ 35 77 33.5 73.7
810mm 32″ 8 5/16″ 35 77 33 75
810mm 32″ 10 3/8″ 43 95 40 68
910mm 36″ 12 1/2″ 68 150 60 132
960mm 38″ 12 1/2″ 77 170 70 154
1016mm 40″ 12 1/2″ 82 180 77 169.4
1116mm 44″ 12 1/2″ 89 196 84 184.8

Disc blade picture display
Farm tools packaging and shipping site display

Full range of tractor products display

Our company produces other agricultural machinery display
Factory introduction
ZheJiang Euro Star Machinery Manufacture Co., Ltd. is a professional Machinery and equipment manufacturer integrating R&D, design, manufacturing, sales and service. The company’s products cover agricultural machinery, construction machinery, laser equipment, generator sets and so on.
As a professional machinery equipment manufacturer in China, the company has committed itself to provide all-round solution to global modern agricultural mechanization. The company has integrating high-end products and technologies resources around the world by upgrading of technologies, quality and service and bringing forth new ideas to create innovative products as so to improve reputation and market share of CZPT in the world step by step.
The company has passed the ISO9001:2015 international quality management system certification, and based on this, covering product development, part purchase, production and manufacturing, quality inspection, sales and after-market service, so as to control the product quality on the whole.
Supported by comprehensive quality assurance system and developed sales and service network, the company has made leaping increase of sales in domestic market via trustful quality and outstanding service mode. Besides, Most of the company’s products have passed the European CE certification.products are exported to Europe, America, Latin America, the Middle East, Asia-Pacific, CIS, Africa and more than 80 countries and regions.Our products have been recognized by all foreign customers, and we are happy to establish long-term cooperative relationships with new friends.
Xihu (West Lake) Dis.g at satisfying the customers, we have worked hard to provide excellent and quick service to customers both at home and abroad via advanced technologies, developed products and comprehensive network so as to maximize the customer satisfaction.
In future, the company will adhere to the principle of sound business operation, continuous innovation and opening up and cooperation to create more high-end machinery and equipment based on current ones for the society and for agriculture and contribute to global modern agriculture production.

Service
One-stop business chain service support system
With an international service team with rich experience and excellent skill, company is committed to build a complete service guarantee system, which is professional, fast, efficient and comprehensive. Every consumer in overseas would receive a full-process service guarantee including pre-sales, on sale and after sales through the way of markets, spare parts, training service and technical support.

1) Market Service
Service Mode : Stationary Point + Circuit Service
Long-term Stationary Point Service
Short-term Circuit Technology Support Service
Service Process: Standard, High Efficient, Seasonable
Service Image: Professional, Unified

2) Spare Parts Service
Spare Parts Guarantee Measures: Dealer+ Spare Part Warehouse
100% original spare parts assure good quality;
Bar-code system adopted in the whole process assures accuracy and promptness;
Professional and accurate package and logistics assure safe and relieved transportation.

3) Training Service
Characteristic Training Mode: invite the technicians of dealers to factory for training, send engineers to dealers for training;
A full range of training tools, multi-language training materials, vivid training video;
Professional training teachers with rich service experience and good communication capability;
One-to-1 special assignment training;
Remote online network training;

4) Technical Support
The whole process Technology support covers on sale and after-sale service.

Terms of the deal:
1). Delivery: 20 days for normal orders
2). Price: We have price on basis FOB HangZhou and CIF your destination for your choice
3). Payment terms for first order:
—–T/T 30% deposit and balance before shipment
—–100% L/C at sight
4). Payment for long terms cooperation of good reputation partners, we have SINOSURE insurance for our VIP clients, and we can offer credit service after we familiar with each other. We are looking for partnership for long-term business

FAQ:
Why choose us?
1). The quality is guaranteed due to strong technical support ,first class component ,advanced production line and strict quality control system.
2). Be leading Expert in global market for more than 5 years, China Famous Export Brand recommended by CCCME (China Chamber of Commerce for Import and Export of Machinery and Electronic Products)
3). One-stop service with a large spare parts warehouse and professional service team .No matter where you are, you are guaranteed of Eurostar’ s warm reception, trustworthy and efficient professional services and persistent care.

How Shipment?
We have worked with many world famous shipping carriers and can arrange shipment to any country in the world, it can save your time and money. We can provide airfreight and CZPT service.

Contact us
Mr. Duke Zhang
ZheJiang Euro Star Machinery Manufacture Co., Ltd.
Add: 198 HangZhou Street, Xihu (West Lake) Dis. District, HangZhou City, ZheJiang Province,P.R.C.
Web:eurostartractor

EUROSTAR CUSTOMERS ALL OVER THE WORLD

After-sales Service: 1 Year
Type: Tractor Power Drives Rake
Application Field: Agriculture, Forestry
Farming Policy: Dry Cultivating Machinery
Power Source: Tractor
Operation: Soil Preparation Machinery, Continuous Running Operation
Customization:
Available

|

Customized Request

Shaft Collar

The Different Parts of a PTO Shaft

Power Take-Off (PTO) shafts are an integral part of a tractor’s driveline. Without them, a tractor cannot operate. It is essential to understand the different parts of a PTO shaft, as they are crucial for the operation of your tractor. These parts are typically overlooked during routine tractor maintenance checks, but knowing more about them will help you practice on farm machinery better.

Tractor’s power take-off (PTO) shaft

A Tractor’s power take-off (or PTO) shaft transfers power from the tractor to an implement. These shafts typically rotate at speeds between 540 and 1000 rpm. A number of safety features help prevent accidental contact between the shaft and the implement.
In order to avoid this problem, tractor operators should be vigilant while operating their tractors. They should make sure that the tractor’s power take-off (PTO) shaft is shielded. These shields include a master shield for the PTO stub, a PTO integral journal shield, and an implement input connection shield. The PTO master shield is mounted on the tractor and extends over the PTO stub on three sides. It is designed to prevent collisions between the tractor and any connected machine drive shaft.
A power take-off (PTO) shaft is an important component on any tractor. It is a shaft that transmits mechanical power from a tractor to an implement or separate machine. Early PTOs used a transmission and were located at the rear of the tractor. They are now available with hydraulic or mechanical drivelines. These power take-offs transfer the tractor’s power to a secondary piece of equipment through a driveshaft.
Proper PTO shaft guards protect people from stepping on rotating shafts. The PTO should not compress fully at any point in the operating range. It should have several inches of overlap at the maximum operating extension. A PTO guard should be positioned properly for each machine.
Despite these benefits, there are still many risks associated with PTO shafts. These powerful and potentially dangerous pieces of machinery can cause severe injury if not used safely. Luckily, proper installation of safety shields can reduce the risk of injury.

Types

PTO shafts come in a variety of different shapes, sizes, and materials. The most common types are square and round, but there are also star-shaped and trilobed types. While the star-shaped type is a typical North American design, the trilobed and lemon-shaped varieties are typically German or Italian. Typically, the lemon-shaped ones are made of an alloy called ‘Lemon Yellow.’ In some cases, the shaft will come with snap rings.
Different manufacturers use various materials for their PTO shafts. The tube of a welded drive shaft must be strong enough to handle the force exerted by the PTO. There are many different materials available, but some are stronger than others. Before choosing the type of drive shaft that is right for your machine, make sure that you know the exact measurements of your driveline.
When deciding between different types of PTO shafts, you must also consider the materials that will be used for your particular application. While splines are the most common material for PTO shafts, you can find various types that have different uses. Carbon steel is malleable and has a low carbon content, which makes it more reliable. A ferrous steel is more durable and contains metals like nickel, chromium, and molybdenum, which make it a great alternative to carbon steel.
A PTO gearbox input shaft extends between the PTO gearbox and the PTO clutch. It is mounted with a toothed wheel 8. An inductive sensor 9 on the shaft outputs a pulsed electronic signal based on the rotational speed of the shaft. These pulsed signals are called inductive speed sensors.

Rotation direction

The PTO shaft is a critical part of the power take-off of a farm tractor. It allows the tractor to transfer power from the engine to an implement such as a mower or other garden equipment. The rotation direction of the PTO shaft depends on the type of implement. Some implements only accept rotation in one direction, while others require rotation in both directions.

Safety chain

Shaft CollarOne of the best ways to protect your PTO shaft is to use a safety chain. A safety chain is a chain that is attached to the PTO shaft, and it prevents the plastic shield from spinning on the shaft. This chain should be fastened to a suitable point on your machine or tractor. It should not be attached to the lower lift arms or the U-guard.
PTO shafts can be very dangerous if they are not guarded. They can rotate as high as 1000 rpm and could seriously injure you. It is also important to ensure that the PTO shaft guard is fitted correctly, and that the tractor is turned off before working on it. In addition, avoiding wearing loose clothing when working around a PTO shaft can help protect your life.
Another way to protect the PTO shaft is to shield the IID shaft. This can be done by using shielding over the straight part of the shaft, the PTO connection, or the Implement Input Connection. A protruding bolt or pin can catch clothing and snag it. If not shielded, the clothing can wrap around the shaft, trapping the person against it.
A good safety chain should be positioned between the tractor and the PTO shaft. The chain should be at least 50 mm wider than the PTO shaft, and should be in good condition. It should cover the entire length of the PTO shaft from the tractor to the first bearing. The PTO shaft must also be fitted with the correct bearing ring. It is also vital to ensure that the PTO guard does not bend or break, as this could result in damage to the PTO shaft.

Shield

Shaft CollarA PTO shaft shield protects the PTO shaft from possible impacts. It is typically made of plastic, but can also be made of metal. These shields are easy to damage, and are therefore preferably made of a durable material. The shields are held in place with brackets. The shields are made with two parts: an inner shield and a protective sleeve.
An improvement to the PTO shaft shield is a bracket that supports both the outer and PTO shaft. It is shown in conjunction with a towed machine in FIGS. 2 and 7. FIG. 7 is a side elevation of the bracket mounted to the tongue of the machine. This shield is designed to prevent the PTO shaft from becoming damaged during the towed process.
The main risk associated with PTO mishaps is entanglement, which can result in serious injuries. If a shaft separates from a tractor, it can strike nearby workers or people. Proper maintenance can minimize the risk of entanglement and save lives. Thankfully, equipment manufacturers have made huge strides in reducing the risk of these accidents. Operators should always make sure that the PTO shaft shield is in place to avoid the risk of entanglement.
In addition to preventing entanglement, a PTO shaft shield also helps protect the universal joints that are mounted on the PTO shaft. The shield is made of plastic or steel. It is typically shaped like an inverted U and covers both the top and sides of the shaft. A detachable PTO shaft shield is also available.
As with all parts of a PTO driveline, the PTO shaft shield should be maintained to prevent damage to the bearings. It is necessary to inspect the shield and replace it whenever it becomes damaged. PTO equipment is often used outdoors, and it is frequently exposed to crop debris, rust, and dirt that can affect the bearings. Proper maintenance will extend the equipment’s lifespan and reduce maintenance costs.
China Custom Working Width 3m Power Driven Harrow for Farm Tractor 110-160HP Disc Pto True Vertical Tillage Powered Gearbox Driven Rotary Harrow Roller Heavy Duty Tiller CE   bush hog pto shaftChina Custom Working Width 3m Power Driven Harrow for Farm Tractor 110-160HP Disc Pto True Vertical Tillage Powered Gearbox Driven Rotary Harrow Roller Heavy Duty Tiller CE   bush hog pto shaft
editor by CX 2023-05-16