Tag Archives: custom shaft

China manufacturer Custom CNC Shaft 304 CNC Machined Long Shaft Motor Drive Shaft Drive Line

Product Description

Product Description

 

Name Drive shaft
Material Steel
Shape Non-standard
Surface Grinding and polishing
Production cycle 20-60days
Length Any
Diameter Any
Tolerance ±0.001
Warranty 1 year
Serve OEM&ODM&Design service

 

Company Profile

HangZhou Xihu (West Lake) Dis. Machinery Manufacture Co., Ltd., located in HangZhou, “China’s ancient copper capital”, is a “national high-tech enterprise”. At the beginning of its establishment, the company adhering to the “to provide clients with high quality products, to provide timely service” concept, adhere to the “everything for the customer, make customer excellent supplier” for the mission.

Certifications

 

Q: Where is your company located ?
A: HangZhou ZheJiang .
Q: How could l get a sample?
A: Before we received the first order, please afford the sample cost and express fee. we will return the sample cost back
to you within your first order.
Q: Sample time?
A: Existing items: within 20-60 days.
Q: Whether you could make our brand on your products?
A: Yes. We can print your Logo on both the products and the packages if you can meet our MOQ.
Q: How to guarantee the quality of your products?
A: 1) stict detection during production. 2) Strict completely inspecion on products before shipment and intact product
packaging ensured.
Q: lf my drawings are safe?
A: Yes ,we can CZPT NDA.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Carbon Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Journal Diameter Dimensional Accuracy: OEM/ODM/Customized
Axis Shape: Straight Shaft
Shaft Shape: OEM/ODM/Customized
Customization:
Available

|

Customized Request

pto shaft

What factors should be considered when designing an efficient driveline system?

Designing an efficient driveline system involves considering various factors that contribute to performance, reliability, and overall system efficiency. Here are the key factors that should be considered when designing an efficient driveline system:

1. Power Requirements:

The power requirements of the vehicle play a crucial role in designing an efficient driveline system. It is essential to determine the maximum power output of the engine and ensure that the driveline components can handle and transfer that power efficiently. Optimizing the driveline for the specific power requirements helps minimize energy losses and maximize overall efficiency.

2. Weight and Packaging:

The weight and packaging of the driveline components have a significant impact on system efficiency. Lightweight materials and compact design help reduce the overall weight of the driveline, which can improve fuel efficiency and vehicle performance. Additionally, efficient packaging ensures that driveline components are properly integrated, minimizing energy losses and maximizing available space within the vehicle.

3. Friction and Mechanical Losses:

Minimizing friction and mechanical losses within the driveline system is crucial for achieving high efficiency. Frictional losses occur at various points, such as bearings, gears, and joints. Selecting low-friction materials, optimizing lubrication systems, and implementing efficient bearing designs can help reduce these losses. Additionally, employing advanced gear designs, such as helical or hypoid gears, can improve gear mesh efficiency and reduce power losses.

4. Gear Ratios and Transmission Efficiency:

The selection of appropriate gear ratios and optimizing transmission efficiency greatly impacts driveline efficiency. Gear ratios should be chosen to match the vehicle’s power requirements, driving conditions, and desired performance characteristics. In addition, improving the efficiency of the transmission, such as reducing gear mesh losses and enhancing hydraulic or electronic control systems, can contribute to overall driveline efficiency.

5. Aerodynamic Considerations:

Aerodynamics play a significant role in a vehicle’s overall efficiency, including the driveline system. Reducing aerodynamic drag through streamlined vehicle design, efficient cooling systems, and appropriate underbody airflow management can enhance driveline efficiency by reducing the power required to overcome air resistance.

6. System Integration and Control:

Efficient driveline design involves seamless integration and control of various components. Employing advanced control systems, such as electronic control units (ECUs), can optimize driveline operation by adjusting power distribution, managing gear shifts, and optimizing torque delivery based on real-time driving conditions. Effective system integration ensures smooth communication and coordination between driveline components, improving overall efficiency.

7. Environmental Considerations:

Environmental factors should also be taken into account when designing an efficient driveline system. Considerations such as emissions regulations, sustainability goals, and the use of alternative power sources (e.g., hybrid or electric drivetrains) can influence driveline design decisions. Incorporating technologies like regenerative braking or start-stop systems can further enhance efficiency and reduce environmental impact.

8. Reliability and Durability:

Designing an efficient driveline system involves ensuring long-term reliability and durability. Selecting high-quality materials, performing thorough testing and validation, and considering factors such as thermal management and component durability help ensure that the driveline system operates efficiently over its lifespan.

By considering these factors during the design process, engineers can develop driveline systems that are optimized for efficiency, performance, and reliability, resulting in improved fuel economy, reduced emissions, and enhanced overall vehicle efficiency.

pto shaft

How do drivelines handle variations in speed and direction during operation?

Drivelines are designed to handle variations in speed and direction during operation, enabling the efficient transfer of power from the engine to the wheels. They employ various components and mechanisms to accommodate these variations and ensure smooth and reliable power transmission. Let’s explore how drivelines handle speed and direction variations:

1. Transmissions:

Transmissions play a crucial role in managing speed variations in drivelines. They allow for the selection of different gear ratios to match the engine’s torque and speed with the desired vehicle speed. By shifting gears, the transmission adjusts the rotational speed and torque delivered to the driveline, enabling the vehicle to operate effectively at various speeds. Transmissions can be manual, automatic, or continuously variable, each with its own mechanism for achieving speed variation control.

2. Clutches:

Clutches are used in drivelines to engage or disengage power transmission between the engine and the driveline components. They allow for smooth engagement during startup and shifting gears, as well as for disconnecting the driveline when the vehicle is stationary or the engine is idling. Clutches facilitate the control of speed variations by providing a means to temporarily interrupt power flow and smoothly transfer torque between rotating components.

3. Differential:

The differential is a key component in drivelines, particularly in vehicles with multiple driven wheels. It allows the wheels to rotate at different speeds while maintaining power transfer. When a vehicle turns, the inside and outside wheels travel different distances and need to rotate at different speeds. The differential allows for this speed variation by distributing torque between the wheels, ensuring smooth operation and preventing tire scrubbing or driveline binding.

4. Universal Joints and CV Joints:

Universal joints and constant velocity (CV) joints are used in drivelines to accommodate variations in direction. Universal joints are typically employed in drivelines with a driveshaft, allowing for the transmission of rotational motion even when there is an angular misalignment between the driving and driven components. CV joints, on the other hand, are used in drivelines that require constant velocity and smooth power transfer at varying angles, such as front-wheel drive vehicles. These joints allow for a consistent transfer of torque while accommodating changes in direction.

5. Transfer Cases:

In drivelines with multiple axles or drivetrains, transfer cases are used to distribute power and torque to different wheels or axles. Transfer cases are commonly found in four-wheel drive or all-wheel drive systems. They allow for variations in speed and direction by proportionally distributing torque between the front and rear wheels, or between different axles, based on the traction requirements of the vehicle.

6. Electronic Control Systems:

Modern drivelines often incorporate electronic control systems to further enhance speed and direction control. These systems utilize sensors, actuators, and computer algorithms to monitor and adjust power distribution, shift points, and torque delivery based on various inputs, such as vehicle speed, throttle position, wheel slip, and road conditions. Electronic control systems enable precise and dynamic management of speed and direction variations, improving traction, fuel efficiency, and overall driveline performance.

By integrating transmissions, clutches, differentials, universal joints, CV joints, transfer cases, and electronic control systems, drivelines effectively handle variations in speed and direction during operation. These components and mechanisms work together to ensure smooth power transmission, optimized performance, and enhanced vehicle control in a wide range of driving conditions and applications.

pto shaft

What is a driveline and how does it function in vehicles and machinery?

A driveline, also known as a drivetrain, refers to the components and systems responsible for transmitting power from the engine to the wheels or tracks in vehicles and machinery. It encompasses various elements such as the engine, transmission, drive shafts, differentials, axles, and wheels or tracks. The driveline plays a crucial role in converting the engine’s power into motion and enabling the vehicle or machinery to move. Here’s a detailed explanation of how the driveline functions in vehicles and machinery:

1. Power Generation: The driveline starts with the engine, which generates power by burning fuel or utilizing alternative energy sources. The engine produces rotational force, known as torque, which is transferred to the driveline for further transmission to the wheels or tracks.

2. Transmission: The transmission is a crucial component of the driveline that controls the distribution of power and torque from the engine to the wheels or tracks. It allows the driver or operator to select different gear ratios to optimize performance and efficiency based on the vehicle’s speed and load conditions. The transmission can be manual, automatic, or a combination of both, depending on the specific vehicle or machinery.

3. Drive Shaft: The drive shaft, also called a propeller shaft, is a rotating mechanical component that transmits torque from the transmission to the wheels or tracks. In vehicles with rear-wheel drive or four-wheel drive, the drive shaft transfers power to the rear axle or all four wheels. In machinery, the drive shaft may transfer power to the tracks or other driven components. The drive shaft is typically a tubular metal shaft with universal joints at each end to accommodate the movement and misalignment between the transmission and the wheels or tracks.

4. Differential: The differential is a device located in the driveline that enables the wheels or tracks to rotate at different speeds while still receiving power. It allows the vehicle or machinery to smoothly negotiate turns without wheel slippage or binding. The differential consists of a set of gears that distribute torque between the wheels or tracks based on their rotational requirements. In vehicles with multiple axles, there may be differentials on each axle to provide power distribution and torque balancing.

5. Axles: Axles are shafts that connect the differential to the wheels or tracks. They transmit torque from the differential to the individual wheels or tracks, allowing them to rotate and propel the vehicle or machinery. Axles are designed to withstand the loads and stresses associated with power transmission and wheel movement. They may be solid or independent, depending on the vehicle or machinery’s suspension and drivetrain configuration.

6. Wheels or Tracks: The driveline’s final components are the wheels or tracks, which directly contact the ground and provide traction and propulsion. In vehicles with wheels, the driveline transfers power from the engine to the wheels, allowing them to rotate and propel the vehicle forward or backward. In machinery with tracks, the driveline transfers power to the tracks, enabling the machinery to move over various terrains and surfaces.

7. Functioning: The driveline functions by transmitting power from the engine through the transmission, drive shaft, differential, axles, and finally to the wheels or tracks. As the engine generates torque, it is transferred through the transmission, which selects the appropriate gear ratio based on the vehicle’s speed and load. The drive shaft then transfers the torque to the differential, which distributes it between the wheels or tracks according to their rotational requirements. The axles transmit the torque from the differential to the individual wheels or tracks, allowing them to rotate and propel the vehicle or machinery.

8. Four-Wheel Drive and All-Wheel Drive: Some vehicles and machinery are equipped with four-wheel drive (4WD) or all-wheel drive (AWD) systems, which provide power to all four wheels simultaneously. In these systems, the driveline includes additional components such as transfer cases and secondary differentials to distribute power to the front and rear axles. The driveline functions similarly in 4WD and AWD systems, but with enhanced traction and off-road capabilities.

In summary, the driveline is a vital component in vehicles and machinery, responsible for transmitting power from the engine to the wheels or tracks. It involves the engine, transmission, drive shafts, differentials, axles, and wheels or tracks. By efficiently transferring torque and power, the driveline enables vehicles and machinery to move, providing traction, propulsion, and control. The specific configuration and components of the driveline may vary depending on the vehicle or machinery’s design, purpose, and drive system.

China manufacturer Custom CNC Shaft 304 CNC Machined Long Shaft Motor Drive Shaft Drive LineChina manufacturer Custom CNC Shaft 304 CNC Machined Long Shaft Motor Drive Shaft Drive Line
editor by CX 2024-05-07

China Custom Custom Large AISI 4340 Cast Iron Long Mild Steel Rolling Mill Transmission Propeller Pto Drive Shaft PTO Driveline

Product Description

custom large aisi 4340 cast iron long mild steel rolling mill transmission propeller pto drive shaft
The drive shaft and the passive shaft shall be a pair of directly adjacent shafts connected by transmission pairs (gears, pulleys, sprockets, etc.). driving shaft is closer to the power source .on the contrary, the passive shaft is similar to the working shaft, it is mainly used in lathes, milling machines, fans, conveyors, injection molding machines, processing centers, steam turbines, drilling machines, hydraulic turbines, machinery industry, etc.

 

We are manufacture main shaft,transmission shaft, rotor shaft,propeller shaft,wind power shaft,passive shaft, support roller shaft,gear shaft,eccentric shaft,custom and oem are accepted.

Product name

OEM machining forged 42CrMo steel thread axis shaft

Material

ZG45,ZG42CrMo,35CrMo,ect

Structure

Casting or forging

Process

Lathing, milling,grinding

Max.diameter

2000mm

Max.length 

8000mm

Max.tolerance

±0.3

Type

According to drawings

Package

Seaworthy packing

Delivery time

15-45 days

Certification

SGS,ISO

 process equipment list 

equipment process part size  qty     model
gantry milling machine 6000*2300*1600 1 BX2571
gantry milling machine 3000*1200*800 1 XQ2012
CNC centre 1000*600 1 1060
CNC centre 1300*700 1 1370
CNC centre 4300*2700 1 4370
vertical milling machine  1500  1 X53T
gantry boring and milling  1800*4000 1 B**2018
horizontal milling machine 960*1200*1200 1 TP *611B
horizontal lathe  dia300*3000 4 CW6163E
saw machine  dia5—300 4  
grinding machine  1000*300 1 M71304
grinding macnine for outer dia 1500*3200 1 M1332B
gantry CNC centre 4000*2700 1 YR4571
common lathe dia20–1280,L 20–5000 6  
common drilling machine  dia2–80 6  
plasma cut machine  4000*12000 1 SXL-400
arc welding machine    2 500-2
co2 welding machine   14 350 500
other common machine  common milling ,lathe , driling and milling machine etc 

 

FAQ
Q1: Are you a factory or trading company?
A:We are a factory and have more years manufacture and sales experience.

Q2: What is your sample policy?
A:We can supply the sample if we have , but the customers have to pay the sample cost and the courier cost.If sample quantity is more than our regular one, we will extra collect sample cost.

Q3: Can you produce according to the samples?
A:Yes, we can produce by your samples or technical drawings. We can build the molds.

Q4: What’s your delivery time?
A:For regular products, we keep them in stock. The specific delivery time depends on the items and the quantity of your order,usually15-20 days

Q5:What is your terms of payment?
A:T/T 30% as deposit, and 70% before delivery.

Q6:Do you test all your goods before delivery?
A:Yes, we have 100% test before delivery.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Carbon Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Journal Diameter Dimensional Accuracy: IT6-IT9
Axis Shape: Straight Shaft
Shaft Shape: Stepped Shaft
Samples:
US$ 2000/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

How do PTO drivelines ensure efficient power transfer while maintaining operator safety?

PTO (Power Take-Off) drivelines are designed to ensure efficient power transfer while prioritizing operator safety. These drivelines incorporate various features and mechanisms to achieve both objectives. Let’s delve into the details:

1. Safety Shields and Guards:

PTO drivelines often include safety shields or guards to enclose the rotating components, such as the driveline shaft and universal joints. These shields are typically made of durable materials and are designed to prevent accidental contact with the moving parts, reducing the risk of entanglement or injury. Safety shields and guards serve as a physical barrier between the driveline and operators, ensuring operator safety while allowing power transfer to occur efficiently.

2. Shear Pins or Bolts:

Shear pins or bolts are commonly used in PTO drivelines to provide a safety measure against excessive loads or sudden obstructions. These pins or bolts are designed to break or shear off when the torque exceeds a certain threshold, disconnecting the driveline and preventing damage to the driveline components. By sacrificing themselves under high load conditions, shear pins or bolts protect the driveline from potential damage, ensuring operator safety and minimizing the need for costly repairs.

3. Slip Clutches:

Slip clutches are another safety feature incorporated into PTO drivelines. These clutches allow for a controlled slipping action when the torque exceeds a predetermined limit. The slipping action protects the driveline and driven equipment from sudden shock loads or excessive torque, preventing damage to the driveline components and reducing the risk of operator injury. Slip clutches provide a safety margin and help maintain efficient power transfer by momentarily disengaging the driveline until the excessive torque diminishes.

4. Overload Protection Devices:

Some PTO drivelines are equipped with overload protection devices, such as torque limiters or electronic control systems. These devices monitor the torque levels in the driveline and automatically disengage or limit power transmission when the torque exceeds a safe threshold. By preventing the driveline from operating under extreme loads, overload protection devices safeguard the driveline components and maintain operator safety. These devices can be reset or adjusted once the excessive load is removed, allowing power transfer to resume.

5. Constant Velocity (CV) Joints:

PTO drivelines that utilize constant velocity (CV) joints offer several safety benefits. CV joints maintain a constant angular velocity, regardless of the operating angle of the driveline, reducing vibration and power loss. By providing smooth power transmission, CV joints minimize the risk of sudden jolts or jerks that could endanger operators or compromise the stability of the driven equipment. The consistent power transfer facilitated by CV joints enhances both operator safety and the overall efficiency of the driveline.

6. Operator Training and Safety Practices:

While not directly built into the driveline itself, operator training and safety practices play a crucial role in ensuring safe and efficient PTO driveline operation. It is essential for operators to receive comprehensive training on the proper use, maintenance, and safety protocols associated with PTO drivelines. This training should include guidelines for safe engagement and disengagement of the driveline, understanding the importance of safety shields and guards, and recognizing potential hazards and risks during operation. By following recommended safety practices, operators can minimize the likelihood of accidents or injuries and maintain efficient power transfer.

By combining these features and promoting proper operator training, PTO drivelines achieve a balance between efficient power transfer and operator safety. The incorporation of safety shields, shear pins or bolts, slip clutches, overload protection devices, and CV joints helps prevent accidents, protect driveline components, and ensure the well-being of operators. It is crucial to adhere to manufacturer guidelines and industry safety standards to maximize the effectiveness of these safety measures and maintain a safe working environment.

pto shaft

What safety precautions should operators follow when working with PTO drivelines?

Working with PTO (Power Take-Off) drivelines requires careful attention to safety due to the potential hazards associated with rotating components and high levels of torque. Operators should follow specific safety precautions to minimize the risk of accidents and injuries. Here are the key safety precautions that operators should follow when working with PTO drivelines:

1. Read and Follow Manufacturer’s Instructions:

– Operators should thoroughly read and understand the manufacturer’s instructions and safety guidelines provided for the specific PTO driveline and equipment they are operating. These instructions typically cover proper installation, operation, maintenance, and safety precautions specific to the equipment. Following the manufacturer’s guidelines ensures that the equipment is used correctly and reduces the risk of accidents.

2. Wear Appropriate Personal Protective Equipment (PPE):

– Operators should always wear the appropriate personal protective equipment (PPE) when working with PTO drivelines. This includes items such as safety glasses, protective gloves, sturdy footwear, and clothing that covers the body. PPE helps protect against flying debris, accidental contact with rotating components, and other potential hazards.

3. Ensure Proper Guarding and Shielding:

– PTO drivelines should be equipped with proper guarding and shielding to prevent accidental contact with rotating or moving parts. Operators should ensure that all guards and shields are in place and properly secured before operating the equipment. Guards and shields help contain debris, reduce the risk of entanglement, and protect against accidental contact with the driveline components.

4. Avoid Loose-Fitting Clothing and Jewelry:

– Operators should avoid wearing loose-fitting clothing, jewelry, or any other items that could get caught in the driveline components. Loose clothing or jewelry can be pulled into the rotating parts, resulting in entanglement or serious injuries. It is important to wear fitted clothing and remove any dangling accessories before operating the equipment.

5. Engage PTO Only When Necessary:

– Operators should engage the PTO only when necessary and disengage it when the equipment is not in use. Engaging the PTO while personnel are near the driveline increases the risk of accidental contact and injuries. The PTO should be engaged only when the equipment is properly set up, and all personnel are at a safe distance.

6. Be Aware of Surroundings:

– Operators should always be aware of their surroundings and ensure that no one is near the driveline before starting or operating the equipment. It is crucial to maintain a safe distance from the driveline and keep bystanders away to prevent accidental contact and injuries.

7. Shut Down Equipment Before Servicing:

– Before performing any maintenance or servicing tasks on the equipment or the PTO driveline, operators should shut down the equipment and disable the power source. This ensures that the driveline components are not in motion and reduces the risk of accidental startup or contact with moving parts.

8. Regular Maintenance and Inspection:

– Operators should adhere to a regular maintenance and inspection schedule for the PTO driveline and associated equipment. This includes checking for any signs of wear, damage, or loose connections. Regular maintenance helps identify potential issues before they become safety hazards and ensures that the driveline operates properly.

9. Receive Proper Training:

– Operators should receive proper training on the safe operation of the equipment and the PTO driveline. Training should cover topics such as equipment setup, safe operating procedures, emergency shut-off procedures, and the recognition of potential hazards. Well-trained operators are more likely to operate the equipment safely and respond appropriately in case of emergencies.

10. Follow Lockout/Tagout Procedures:

– When performing maintenance or repair tasks that require accessing the driveline components, operators should follow lockout/tagout procedures. This involves isolating the power source, applying locks and tags to prevent accidental startup, and verifying that the equipment is de-energized before beginning any work. Lockout/tagout procedures are essential for preventing unexpected energization and protecting personnel from hazardous energy.

By following these safety precautions, operators can minimize the risk of accidents and injuries when working with PTO drivelines. Safety should always be a priority, and operators should remain vigilant, adhere to proper procedures, and use common sense to ensure a safe working environment.

pto shaft

How do PTO drivelines contribute to power transmission from tractors to implements?

PTO (Power Take-Off) drivelines play a crucial role in facilitating power transmission from tractors to implements in agricultural and industrial applications. They provide a reliable and efficient mechanism for transferring rotational power from the tractor’s engine to various implements. Let’s explore how PTO drivelines contribute to power transmission in more detail:

1. Direct Power Transfer:

A PTO driveline allows for direct power transfer from the tractor’s engine to the implement. When the PTO is engaged, the rotational power generated by the engine is transmitted through the driveline without the need for additional power sources or intermediate components. This direct power transfer ensures efficiency and minimizes power losses, allowing the implement to receive the full power output of the tractor’s engine.

2. Rotational Speed and Torque:

PTO drivelines enable the adjustment of rotational speed and torque to match the requirements of different implements. Tractors often have multiple PTO speed options, typically 540 or 1,000 revolutions per minute (RPM), although other speeds may be available. The PTO driveline allows the operator to select the appropriate speed for the implement being used. This flexibility ensures that the implement operates at the optimal speed, maximizing its efficiency and performance.

3. Standardization and Compatibility:

PTO drivelines are standardized across different tractor makes and models, ensuring compatibility with a wide range of implements. There are industry-standard PTO shaft sizes and configurations, such as the 6-spline or 21-spline shafts, which allow for easy connection between the tractor and implement. This standardization and compatibility enable farmers and operators to use a variety of implements with their tractors, expanding the versatility and functionality of their equipment.

4. Safety Features:

PTO drivelines incorporate safety features to protect operators and prevent accidents. One important safety feature is the PTO clutch, which allows for the engagement and disengagement of the power transmission. The clutch provides control over the power transfer process, allowing operators to stop the power flow when necessary, such as during implement attachment or detachment. Safety shields or guards are also commonly used to cover the rotating PTO shaft, preventing accidental contact and reducing the risk of injury.

5. Ease of Use:

PTO drivelines are designed for ease of use, making it convenient for operators to connect and disconnect implements. Implement attachment typically involves aligning the PTO shaft with the implement’s input shaft and securing it with a locking mechanism or a quick coupler. This process is relatively straightforward and can be done quickly, allowing for efficient implement changes during operations. The ease of use provided by PTO drivelines saves time and enhances productivity in agricultural and industrial settings.

6. Versatility and Productivity:

PTO drivelines contribute to the versatility and productivity of agricultural and industrial machinery. The ability to connect a wide range of implements, such as mowers, balers, seeders, and sprayers, to the tractor through the PTO driveline enables operators to perform various tasks with a single machine. This versatility eliminates the need for multiple dedicated power sources or specialized equipment, optimizing resource utilization and maximizing productivity in farming and industrial operations.

Overall, PTO drivelines play a vital role in enabling power transmission from tractors to implements. Through direct power transfer, adjustable rotational speed and torque, standardization and compatibility, safety features, ease of use, and versatility, PTO drivelines ensure efficient and effective power transmission. They enhance the functionality and productivity of agricultural and industrial machinery, enabling operators to accomplish a wide range of tasks with their tractors and implements.

China Custom Custom Large AISI 4340 Cast Iron Long Mild Steel Rolling Mill Transmission Propeller Pto Drive Shaft PTO Driveline  China Custom Custom Large AISI 4340 Cast Iron Long Mild Steel Rolling Mill Transmission Propeller Pto Drive Shaft PTO Driveline
editor by CX 2024-04-30

China Custom Gjf Car CV Joint Drive Shaft for CZPT Hilux Vigo Kun25 Tgn26 Kun51 43430-0K020 2004-Hot Sale Products Drive Line

Product Description

 

Product Description

1.We are manufacturer of cv drive shaft,cv  axle, cv joint and cv boot, we have more than 20-years experience in producing and selling auto parts.
2.We have strict quality control, the quality of our products is very good.
3.We are professional in different market around the world.
4.The reviews our customers given us are very positive, we have confidence in our products.
5.OEM/ODM is available, meet your requirements well.
6.Large warehouse, huge stocks!!! friendly for those customers who want some quantity.
7.Ship products out very fastly, we have stock.

Product Name  Drive shaft Material  42CrMo alloy steel
Car fitment  Toyota Warranty  12 months 
Model  for CZPT CZPT Honda CZPT CZPT CZPT VW Mazda BMW Place of origin  ZHangZhoug, China
Productive year  pls contact us for more details  MOQ 4 PCS
OE number  factory standard Delivery time  1-7 days 
OEM/ODM Yes Brand  GJF
Packing size  according to each model Payment  L/C,T/T,western Union,Cash,PayPal 
Sample service  Depends on the situation of stock  Weight  7.9KG

Detailed Photos

 

Customer Review

 

Packaging & Shipping

 

 

FAQ

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Months
Condition: New
Axle Number: 1
Samples:
US$ 42.8/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

How do manufacturers ensure the compatibility of driveline components with different vehicles?

Manufacturers employ various measures to ensure the compatibility of driveline components with different vehicles. These measures involve careful design, engineering, testing, and standardization processes to meet the specific requirements of each vehicle type. Let’s explore how manufacturers ensure compatibility:

1. Vehicle-Specific Design:

Manufacturers design driveline components with specific vehicle types in mind. Each vehicle type, such as passenger cars, trucks, SUVs, or commercial vehicles, has unique requirements in terms of power output, torque capacity, weight distribution, space constraints, and intended usage. Manufacturers consider these factors during the component design phase to ensure that the driveline components are optimized for compatibility with the intended vehicle type.

2. Engineering and Simulation:

Manufacturers employ advanced engineering techniques and simulation tools to evaluate the performance and compatibility of driveline components. They use computer-aided design (CAD) software and finite element analysis (FEA) simulations to model and analyze the behavior of the components under various operating conditions. This allows them to identify any potential compatibility issues, such as excessive stress, misalignment, or interference, and make necessary design adjustments before moving to the production stage.

3. Prototyping and Testing:

Manufacturers create prototypes of driveline components and subject them to rigorous testing to ensure compatibility. These tests include bench testing, dynamometer testing, and vehicle-level testing. By simulating real-world operating conditions, manufacturers can evaluate the performance, durability, and compatibility of the components. They assess factors such as power transmission efficiency, torque capacity, heat dissipation, noise and vibration levels, and overall drivability to ensure that the components meet the requirements and are compatible with the intended vehicle.

4. Standardization:

Manufacturers adhere to industry standards and specifications to ensure compatibility and interchangeability of driveline components. These standards cover various aspects such as dimensions, material properties, spline profiles, shaft diameters, and mounting interfaces. By following established standards, manufacturers can ensure that their driveline components can be seamlessly integrated into different vehicles from various manufacturers, promoting compatibility and ease of replacement or upgrade.

5. Collaborative Development:

Manufacturers often collaborate closely with vehicle manufacturers during the development process to ensure compatibility. This collaboration involves sharing specifications, design requirements, and performance targets. By working together, driveline manufacturers can align their component designs with the vehicle manufacturer’s specifications, ensuring that the driveline components fit within the vehicle’s space constraints, mating interfaces, and intended usage. This collaborative approach helps optimize compatibility and integration between the driveline components and the vehicle’s overall system.

6. Continuous Improvement:

Manufacturers continuously improve their driveline components based on feedback, field data, and advancements in technology. They gather information from vehicle manufacturers, end-users, and warranty claims to identify any compatibility issues or performance shortcomings. This feedback loop helps drive refinements and enhancements in the design, manufacturing processes, and material selection of the driveline components, ensuring better compatibility and performance in future iterations.

Overall, manufacturers employ a combination of vehicle-specific design, engineering and simulation, prototyping and testing, standardization, collaborative development, and continuous improvement to ensure the compatibility of driveline components with different vehicles. These efforts help optimize power transmission, reliability, and performance, while ensuring a seamless integration of the driveline components into the diverse range of vehicles present in the market.

pto shaft

Can driveline components be customized for specific vehicle or equipment requirements?

Yes, driveline components can be customized to meet specific vehicle or equipment requirements. Manufacturers and suppliers offer a range of options for customization to ensure optimal performance, compatibility, and integration with different vehicles or equipment. Customization allows for tailoring the driveline components to specific powertrain configurations, operating conditions, torque requirements, and space constraints. Let’s explore the details of customization for driveline components:

1. Powertrain Configuration:

Driveline components can be customized to accommodate different powertrain configurations. Whether it’s a front-wheel drive, rear-wheel drive, or all-wheel drive system, manufacturers can design and provide specific components such as differentials, gearboxes, and drive shafts that are compatible with the required power distribution and torque transfer characteristics of the particular configuration.

2. Torque Capacity:

Driveline components can be customized to handle specific torque requirements. Different vehicles or equipment may have varying torque outputs based on their intended applications. Manufacturers can engineer and produce driveline components with varying torque-handling capabilities to ensure reliable and efficient power transmission for a range of applications, from passenger vehicles to heavy-duty trucks or machinery.

3. Size and Configuration:

Driveline components can be customized in terms of size, shape, and configuration to fit within the space constraints of different vehicles or equipment. Manufacturers understand that each application may have unique packaging limitations, such as limited available space or specific mounting requirements. Through customization, driveline components can be designed and manufactured to align with these specific dimensional and packaging constraints.

4. Material Selection:

The choice of materials for driveline components can be customized based on the required strength, weight, and durability characteristics. Different vehicles or equipment may demand specific material properties to optimize performance, such as lightweight materials for improved fuel efficiency or high-strength alloys for heavy-duty applications. Manufacturers can provide customized driveline components with materials selected to meet the specific performance and operational requirements.

5. Performance Optimization:

Driveline components can be customized to optimize performance in specific applications. Manufacturers can modify aspects such as gear ratios, differential configurations, or clutch characteristics to enhance acceleration, traction, efficiency, or specific performance attributes based on the intended use of the vehicle or equipment. This customization ensures that the driveline components are tailored to deliver the desired performance characteristics for the specific application.

6. Specialized Applications:

For specialized applications, such as off-road vehicles, racing cars, or industrial machinery, driveline components can be further customized to meet the unique demands of those environments. Manufacturers can develop specialized driveline components with features like enhanced cooling, reinforced construction, or increased torque capacity to withstand extreme conditions or heavy workloads.

Overall, customization of driveline components allows manufacturers to meet the specific requirements of different vehicles or equipment. From powertrain configuration to torque capacity, size and configuration, material selection, performance optimization, and specialized applications, customization ensures that driveline components are precisely designed and engineered to achieve the desired performance, compatibility, and integration with specific vehicles or equipment.

pto shaft

How do drivelines contribute to power transmission and motion in various applications?

Drivelines play a crucial role in power transmission and motion in various applications, including automotive vehicles, agricultural machinery, construction equipment, and industrial systems. They are responsible for transmitting power from the engine or power source to the driven components, enabling motion and providing the necessary torque to perform specific tasks. Here’s a detailed explanation of how drivelines contribute to power transmission and motion in various applications:

1. Automotive Vehicles: In automotive vehicles, such as cars, trucks, and motorcycles, drivelines transmit power from the engine to the wheels, enabling motion and propulsion. The driveline consists of components such as the engine, transmission, drive shafts, differentials, and axles. The engine generates power by burning fuel, and this power is transferred to the transmission. The transmission selects the appropriate gear ratio and transfers power to the drive shafts. The drive shafts transmit the power to the differentials, which distribute it to the wheels. The wheels, in turn, convert the rotational power into linear motion, propelling the vehicle forward or backward.

2. Agricultural Machinery: Drivelines are extensively used in agricultural machinery, such as tractors, combines, and harvesters. These machines require power transmission to perform various tasks, including plowing, tilling, planting, and harvesting. The driveline in agricultural machinery typically consists of a power take-off (PTO) unit, drive shafts, gearboxes, and implement shafts. The PTO unit connects to the tractor’s engine and transfers power to the drive shafts. The drive shafts transmit power to the gearboxes, which further distribute it to the implement shafts. The implement shafts drive the specific agricultural implements, enabling them to perform their intended functions.

3. Construction Equipment: Drivelines are essential in construction equipment, such as excavators, loaders, bulldozers, and cranes. These machines require power transmission to perform tasks such as digging, lifting, pushing, and hauling. The driveline in construction equipment typically consists of an engine, transmission, drive shafts, hydraulic systems, and various gear mechanisms. The engine generates power, which is transferred to the transmission. The transmission, along with the hydraulic systems and gear mechanisms, converts and controls the power to drive the different components of the equipment, allowing them to perform their specific functions.

4. Industrial Systems: Drivelines are widely used in industrial systems and machinery, including conveyor systems, manufacturing equipment, and heavy-duty machinery. These applications require power transmission for material handling, processing, and production. The driveline in industrial systems often involves electric motors, gearboxes, drive shafts, couplings, and driven components. The electric motor provides rotational power, which is transmitted through the driveline components to drive the machinery or conveyors, facilitating the desired motion and power transmission within the industrial system.

5. Power Generation: Drivelines are also employed in power generation applications, such as generators and turbines. These systems require power transmission to convert mechanical energy into electrical energy. The driveline in power generation often consists of a prime mover, such as an internal combustion engine or a steam turbine, connected to a generator. The driveline components, such as couplings, gearboxes, and drive shafts, transmit the rotational power from the prime mover to the generator, which converts it into electrical power.

6. Marine and Aerospace Applications: Drivelines are utilized in marine vessels and aerospace systems to facilitate propulsion and motion. In marine applications, drivelines transfer power from engines or turbines to propellers or water jets, enabling the vessel to move through the water. In aerospace applications, drivelines transmit power from engines to various components, such as rotors or propellers, providing the necessary thrust for flight.

In summary, drivelines are integral to power transmission and motion in a wide range of applications. They enable the transfer of power from the engine or power source to the driven components, allowing for the generation of torque and the performance of specific tasks. Drivelines play a vital role in automotive vehicles, agricultural machinery, construction equipment, industrial systems, power generation, and marine and aerospace applications, contributing to efficient power transmission, motion, and the overall functionality of these diverse systems.

China Custom Gjf Car CV Joint Drive Shaft for CZPT Hilux Vigo Kun25 Tgn26 Kun51 43430-0K020 2004-Hot Sale Products Drive LineChina Custom Gjf Car CV Joint Drive Shaft for CZPT Hilux Vigo Kun25 Tgn26 Kun51 43430-0K020 2004-Hot Sale Products Drive Line
editor by CX 2024-04-26

China Custom Car Auto Spare Parts Front Rear CV Axle Drive Shaft for CZPT CZPT Honda CZPT Mazda CZPT CZPT CZPT Land Rover Jeep Drive Line

Product Description

Product Description

Product Name Car Auto Spare Parts Front Rear CV Axle Drive Shaft for CZPT CZPT Honda CZPT Mazda CZPT CZPT CZPT Land Rover Jeep
OEM NO. According to Clients’ Needs
Car Model For Japanese Cars
Gross Weight [kg] OEM Standard
Number of Ribs OEM Standard
Voltage [V] OEM Standard
Alternator Charge Current [A] OEM Standard
Color Same as pictrue
Material Plastic+Metal
Warranty 1 Year
MOQ 1PC if we have stock, 50PCS for production.
Delivery Time 7-45 days
Our Advantage 1. Advanced design and skilled workmanship gurantee the standard of our products; 

2. High-quality raw materials gurantee the good performance of our products; 

3.Experienced teams and mangement gurantee the production efficiency and the delivery time; 

4.Our good service bring you pleasant purchase. 

5. The same length as original one. 

6. Lower MOQ is acceptable with more models. 

7.Laser Mark for free. 

8.Pallet with Film for free.

Detailed Photos

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Months
Condition: 100% Brand New
Certification: ISO
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

Can drivelines be adapted for use in both automotive and industrial settings?

Drivelines can indeed be adapted for use in both automotive and industrial settings. While there are some differences in the specific requirements and design considerations between these two applications, many fundamental principles and components of drivelines remain applicable to both sectors. Let’s explore how drivelines can be adapted for use in automotive and industrial settings:

1. Power Transmission:

In both automotive and industrial applications, drivelines serve the purpose of transmitting power from a source (such as an engine or motor) to various driven components. The driveline components, including transmissions, clutches, differentials, and shafts, can be adapted and optimized based on the specific power requirements and operating conditions of each application. While automotive drivelines typically focus on delivering power for propulsion, industrial drivelines may transmit power to various machinery and equipment.

2. Gearboxes and Transmissions:

Both automotive and industrial drivelines often incorporate gearboxes or transmissions to provide multiple gear ratios for efficient power transfer. However, the gear ratios and design considerations may differ based on the specific requirements of each application. Automotive drivelines are typically optimized for a wide range of operating conditions, including varying speeds and loads. Industrial drivelines, on the other hand, may be designed to meet specific torque and speed requirements of industrial machinery.

3. Shaft and Coupling Systems:

Shafts and coupling systems are essential components of drivelines in both automotive and industrial settings. They transmit power between different components and allow for misalignment compensation. While automotive drivelines often use driveshafts and universal joints to transmit power to the wheels, industrial drivelines may employ shafts, couplings, and flexible couplings to connect various machinery components such as motors, pumps, and generators.

4. Differentiated Requirements:

Automotive and industrial drivelines have different operating conditions, load requirements, and environmental considerations. Automotive drivelines need to accommodate various road conditions, vehicle dynamics, and driver comfort. Industrial drivelines, on the other hand, may operate in more controlled environments but are subjected to specific industry requirements, such as high torque, continuous operation, or exposure to harsh conditions. The driveline components and materials can be adapted accordingly to meet these different requirements.

5. Control and Monitoring Systems:

Both automotive and industrial drivelines can benefit from advanced control and monitoring systems. These systems can optimize power distribution, manage gear shifts, monitor component health, and improve overall driveline efficiency. In automotive applications, electronic control units (ECUs) play a significant role in controlling driveline functions, while industrial drivelines may incorporate programmable logic controllers (PLCs) or other specialized control systems.

6. Customization and Integration:

Drivelines can be customized and integrated into specific automotive and industrial applications. Automotive drivelines can be tailored to meet the requirements of different vehicle types, such as passenger cars, trucks, or sports vehicles. Industrial drivelines can be designed to integrate seamlessly with specific machinery and equipment, considering factors such as available space, power requirements, and maintenance accessibility.

7. Maintenance and Service:

While the specific maintenance requirements may vary, both automotive and industrial drivelines require regular inspection, lubrication, and component replacement to ensure optimal performance and longevity. Proper maintenance practices, as discussed earlier, are essential for prolonging the lifespan of driveline components in both settings.

In summary, drivelines can be adapted for use in both automotive and industrial settings by considering the unique requirements and operating conditions of each application. While there are some differences in design considerations and component selection, the fundamental principles of power transmission and driveline functionality remain applicable in both sectors.

pto shaft

What safety precautions should be followed when working with driveline components?

Working with driveline components requires careful attention to safety to prevent accidents, injuries, and damage to equipment. Driveline components, such as transmissions, drive shafts, and differentials, can involve rotating parts, high torque, and heavy machinery, making it essential to follow proper safety precautions. Here are some important safety measures to consider when working with driveline components:

1. Personal Protective Equipment (PPE):

Always wear appropriate personal protective equipment, including safety glasses, gloves, and protective clothing. PPE helps protect against potential hazards such as flying debris, sharp edges, and contact with hot or moving parts. Use steel-toed safety boots to protect your feet from heavy objects or accidental impacts.

2. Lockout/Tagout:

Prior to working on driveline components, follow lockout/tagout procedures to ensure the equipment is properly shut down and isolated from its power source. Lockout/tagout involves disconnecting power, applying locks or tags to control switches, and verifying that the equipment is de-energized. This prevents accidental startup or release of stored energy that could cause serious injuries.

3. Vehicle/Equipment Stability:

Ensure that the vehicle or equipment is stable and securely supported before working on driveline components. Use appropriate jack stands or hoists to provide a stable and reliable support structure. Never rely solely on hydraulic jacks or unstable supports, as they can lead to accidents or equipment damage.

4. Proper Lifting Techniques:

When handling heavy driveline components, use proper lifting techniques to prevent strains or injuries. Lift with your legs, not your back, and get assistance when dealing with heavy or bulky components. Use mechanical lifting aids, such as hoists or cranes, when necessary to avoid overexertion or dropping components.

5. Component Inspection:

Prior to installation or maintenance, carefully inspect driveline components for any signs of damage, wear, or corrosion. Replace any worn or damaged parts to ensure safe and reliable operation. Follow the manufacturer’s guidelines and specifications for component inspection, maintenance, and replacement intervals.

6. Proper Tools and Equipment:

Use the correct tools and equipment for the job. Improper tools or makeshift solutions can lead to accidents, damaged components, or stripped fasteners. Follow the manufacturer’s recommendations for specialized tools or equipment needed for specific driveline components.

7. Follow Service Manuals and Procedures:

Refer to the relevant service manuals and follow proper procedures when working on driveline components. Service manuals provide step-by-step instructions, torque specifications, and safety precautions specific to the vehicle or equipment you are working on. Adhering to these guidelines ensures proper disassembly, installation, and adjustment of driveline components.

8. Proper Disposal of Fluids and Waste:

Dispose of fluids, such as oil or coolant, and waste materials in accordance with local regulations. Spilled fluids can create slip hazards, and improper disposal can harm the environment. Use appropriate containers and disposal methods as prescribed by local laws and regulations.

9. Training and Knowledge:

Ensure that individuals working with driveline components have received proper training and possess the necessary knowledge and skills. Inadequate training or lack of knowledge can lead to errors, accidents, or improper installation, compromising safety and performance.

10. Follow Workplace Safety Regulations:

Adhere to workplace safety regulations and guidelines established by relevant authorities. These regulations may include specific requirements for working with driveline components, such as safety standards, training requirements, and equipment certifications. Stay updated on safety regulations and ensure compliance to maintain a safe working environment.

By following these safety precautions, individuals can minimize the risk of accidents, injuries, and equipment damage when working with driveline components. Safety should always be a top priority to promote a secure and productive work environment.

pto shaft

How do drivelines handle variations in torque, speed, and angles of rotation?

Drivelines are designed to handle variations in torque, speed, and angles of rotation within a power transmission system. They incorporate specific components and mechanisms that enable the smooth and efficient transfer of power while accommodating these variations. Here’s a detailed explanation of how drivelines handle variations in torque, speed, and angles of rotation:

Variations in Torque:

Drivelines encounter variations in torque when the power requirements change, such as during acceleration, deceleration, or when encountering different loads. To handle these variations, drivelines incorporate several components:

1. Clutch: In manual transmission systems, a clutch is used to engage or disengage the engine’s power from the driveline. By partially or completely disengaging the clutch, the driveline can temporarily interrupt power transfer, allowing for smooth gear changes or vehicle stationary positions. This helps manage torque variations during shifting or when power demands change abruptly.

2. Torque Converter: Automatic transmissions employ torque converters, which are fluid couplings that transfer power from the engine to the transmission. Torque converters provide a certain amount of slip, allowing for torque multiplication and smooth power transfer. The slip in the torque converter helps absorb torque variations and dampens abrupt changes, ensuring smoother operation during acceleration or when power demands fluctuate.

3. Differential: The differential mechanism in drivelines compensates for variations in torque between the wheels, particularly during turns. When a vehicle turns, the inner and outer wheels travel different distances, resulting in different rotational speeds. The differential allows the wheels to rotate at different speeds while distributing torque to each wheel accordingly. This ensures that torque variations are managed and power is distributed effectively to optimize traction and stability.

Variations in Speed:

Drivelines also need to handle variations in rotational speed, especially when the engine operates at different RPMs or when different gear ratios are selected. The following components aid in managing speed variations:

1. Transmission: The transmission allows for the selection of different gear ratios, which influence the rotational speed of the driveline components. By changing gears, the transmission adjusts the speed at which power is transferred from the engine to the driveline. This allows the driveline to adapt to different speed requirements, whether it’s for quick acceleration or maintaining a consistent speed during cruising.

2. Gearing: Driveline systems often incorporate various gears in the transmission, differential, or axle assemblies. Gears provide mechanical advantage by altering the speed and torque relationship. By employing different gear ratios, the driveline can adjust the rotational speed and torque output to match the requirements of the vehicle under different operating conditions.

Variations in Angles of Rotation:

Drivelines must accommodate variations in angles of rotation, especially in vehicles with flexible or independent suspension systems. The following components help manage these variations:

1. Universal Joints: Universal joints, also known as U-joints, are flexible couplings used in drivelines to accommodate variations in angles and misalignments between components. They allow for smooth power transmission between the drive shaft and other components, compensating for changes in driveline angles during vehicle operation or suspension movement. Universal joints are particularly effective in handling non-linear or variable angles of rotation.

2. Constant Velocity Joints (CV Joints): CV joints are specialized joints used in drivelines, especially in front-wheel-drive and all-wheel-drive vehicles. They allow the driveline to handle variations in angles while maintaining a constant velocity during rotation. CV joints are designed to mitigate vibrations, power losses, and potential binding or juddering that can occur due to changes in angles of rotation.

By incorporating these components and mechanisms, drivelines effectively handle variations in torque, speed, and angles of rotation. These features ensure smooth power transfer, optimal performance, and enhanced durability in various driving conditions and operating scenarios.

China Custom Car Auto Spare Parts Front Rear CV Axle Drive Shaft for CZPT CZPT Honda CZPT Mazda CZPT CZPT CZPT Land Rover Jeep Drive LineChina Custom Car Auto Spare Parts Front Rear CV Axle Drive Shaft for CZPT CZPT Honda CZPT Mazda CZPT CZPT CZPT Land Rover Jeep Drive Line
editor by CX 2024-04-16

China Custom Forged Alloy Steel Drive Shaft for Tractors Drive Line

Product Description

 

Product Description:

Products:   Forged Alloy Steel Drive Shaft for Tractors 
Material: 40CrMo

Weight: From 0.2kg-5kg

Packing: Wooden case

Min Order: 1000pcs

Customized Production: Available as per your drawings or sample

Company Name: HiHangZhou Precision Forging Technology Co., Ltd.

 

Process Die Forging
Material Stainless Steel, Carbon Steel, Alloy Steel 
Weight 0.1Kg~20Kg
Heat Treatment Quenching, Annealing,Tempering,Normalizing, Quenching and Tempering
Testing instrument  composition testing Spectrometer, Metallographic microscope
Performance testing Hardness tester, Tensile testing machine
Size Measuring  CMM,Micrometer, Vernier Caliper, Depth Caliper, feeler gauge
Thread Gauge , Height Gauge
Roughness Ra1.6~Ra6.3
Machining Equipment CNC Center , CNC Machines, Turning, Drilling, Milling, boring machine,Grinding Machines,
Wire EDM,Laser Cutting&Welding, Plasma Cutting &Welding, EDM etc.
Quality control Sampling inspection of raw materials and semi-finished products, 100% Inspection of finished products  
Surface Treatment Shot Blast ,  Powder Coating, Polishing, Galvanized , Chrome Plated   
Production Capacity 60000T / Years
Lead Time Normally 30 – 45 Days.
Payment Terms T/T , L/C 
Material Standard ASTM , AISI , DIN , BS, JIS, GB,
Certification ISO9001:2008, IATF16949:2016

Products Quality Control

Quality control at HiHangZhou Precision Forging Technology Co., Ltd. involves thorough inspection and control of incoming materials, production processes, and finished products.

The quality control process includes:

  1. Analysis of incoming raw materials using a metallographic microscope to ensure the chemical composition meets production requirements.
  2. Timely sampling during production to ensure products are defect-free and to address any quality issues promptly.
  3. Utilization of a magnetic particle flaw detector in the final step of production to detect hidden cracks or defects in metal parts.
  4. Sampling of finished metal parts for mechanical performance tests, size measurement, and 100% manual surface quality inspection in the laboratory.

Below are pictures of the relevant testing equipment:

 

Quality Management System Control:

At HiHangZhou Precision Forging Technology Co., Ltd., we adhere to strict system management in accordance with ISO9001 and TS16949 quality standards. Our production site follows 5S lean production management to ensure efficiency and quality.

 

HiHangZhou Precision Forging Technology Co., Ltd.

Our Advantages:

  • Brand: Our parent company, HiHangZhou Group, is a world-renowned high-end machinery manufacturing enterprise with 40 domestic subsidiaries and branches and 8 foreign manufacturing plants. We have a long-term experience and good reputation in cooperation with world-renowned enterprises.
  • Technology: We have a complete production process and equipment research and development capabilities for ferrous metals forming. With over 25 years of production experience in forging equipment and casting equipment manufacturers, one-third of our company’s employees are technicians and R&D personnel, ensuring high-quality products are produced efficiently.
  • Service: We provide custom and standard manufacturing services with multiple manufacturing process integrations. The quality and delivery of products are fully guaranteed, with quick and effective communication abilities.
  • Culture: Our unique corporate culture unleashes the potential of individuals and provides strong vitality for the sustainable development of the company.
  • Social Responsibility: Our company strictly implements low-carbon environmental protection, energy-saving, and emission-reduction production, making us a benchmark enterprise in the local region.

Company Culture

Our Vision

To become 1 of the leading companies.

Our Mission

To become a platform for employees to realize their dreams.

To become a transforming and upgrading pacemaker of Chinese enterprises.

To set national brands with pride.

Our Belief

We strive to build the company into an ideal platform for entrepreneurs to realize their self-worth and contribute to society.

Values

Improvement is innovation, everyone can innovate.

Innovation is inspired, and failures are tolerated.

Frequently Asked Questions

  1. Q: Are you a trading company or a manufacturer?
    A: We are a manufacturer specializing in forging products, casting products, and machining capabilities.
  2. Q: What series products do you offer?
    A: We focus on forming processing of ferrous metals through casting, forging, and machining for various industries.
  3. Q: Do you provide samples? Is it free?
    A: Yes, we provide samples with customers covering the freight costs to show mutual cooperation sincerity.
  4. Q: Is OEM available?
    A: Yes, we offer OEM services.
  5. Q: What’s your quality guarantee?
    A: We prioritize continuous product quality improvement through strict control measures and certifications like ISO/TS16949 and SGS.
  6. Q: How about the packing?
    A: We typically use iron boxes or wooden cases, but can customize as per customer requirements.
  7. Q: What is your minimum order quantity?
    A: Minimum order quantity varies based on product features like material, weight, and construction.
  8. Q: What is the lead time?
    A: Lead time for new dies or molds and samples is 30-45 days, with large batch production within the same timeframe, subject to part complexity and quantity.
  9. Q: What payment methods do you accept?
    A: Payments can be made via T/T or L/C, with a 30% deposit in advance and 70% balance against the copy of B/L.

Certification

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Processing Object: Metal
Molding Style: Forging
Molding Technics: Pressure Casting
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

How do manufacturers ensure the compatibility of driveline components with different vehicles?

Manufacturers employ various measures to ensure the compatibility of driveline components with different vehicles. These measures involve careful design, engineering, testing, and standardization processes to meet the specific requirements of each vehicle type. Let’s explore how manufacturers ensure compatibility:

1. Vehicle-Specific Design:

Manufacturers design driveline components with specific vehicle types in mind. Each vehicle type, such as passenger cars, trucks, SUVs, or commercial vehicles, has unique requirements in terms of power output, torque capacity, weight distribution, space constraints, and intended usage. Manufacturers consider these factors during the component design phase to ensure that the driveline components are optimized for compatibility with the intended vehicle type.

2. Engineering and Simulation:

Manufacturers employ advanced engineering techniques and simulation tools to evaluate the performance and compatibility of driveline components. They use computer-aided design (CAD) software and finite element analysis (FEA) simulations to model and analyze the behavior of the components under various operating conditions. This allows them to identify any potential compatibility issues, such as excessive stress, misalignment, or interference, and make necessary design adjustments before moving to the production stage.

3. Prototyping and Testing:

Manufacturers create prototypes of driveline components and subject them to rigorous testing to ensure compatibility. These tests include bench testing, dynamometer testing, and vehicle-level testing. By simulating real-world operating conditions, manufacturers can evaluate the performance, durability, and compatibility of the components. They assess factors such as power transmission efficiency, torque capacity, heat dissipation, noise and vibration levels, and overall drivability to ensure that the components meet the requirements and are compatible with the intended vehicle.

4. Standardization:

Manufacturers adhere to industry standards and specifications to ensure compatibility and interchangeability of driveline components. These standards cover various aspects such as dimensions, material properties, spline profiles, shaft diameters, and mounting interfaces. By following established standards, manufacturers can ensure that their driveline components can be seamlessly integrated into different vehicles from various manufacturers, promoting compatibility and ease of replacement or upgrade.

5. Collaborative Development:

Manufacturers often collaborate closely with vehicle manufacturers during the development process to ensure compatibility. This collaboration involves sharing specifications, design requirements, and performance targets. By working together, driveline manufacturers can align their component designs with the vehicle manufacturer’s specifications, ensuring that the driveline components fit within the vehicle’s space constraints, mating interfaces, and intended usage. This collaborative approach helps optimize compatibility and integration between the driveline components and the vehicle’s overall system.

6. Continuous Improvement:

Manufacturers continuously improve their driveline components based on feedback, field data, and advancements in technology. They gather information from vehicle manufacturers, end-users, and warranty claims to identify any compatibility issues or performance shortcomings. This feedback loop helps drive refinements and enhancements in the design, manufacturing processes, and material selection of the driveline components, ensuring better compatibility and performance in future iterations.

Overall, manufacturers employ a combination of vehicle-specific design, engineering and simulation, prototyping and testing, standardization, collaborative development, and continuous improvement to ensure the compatibility of driveline components with different vehicles. These efforts help optimize power transmission, reliability, and performance, while ensuring a seamless integration of the driveline components into the diverse range of vehicles present in the market.

pto shaft

Can driveline components be customized for specific vehicle or equipment requirements?

Yes, driveline components can be customized to meet specific vehicle or equipment requirements. Manufacturers and suppliers offer a range of options for customization to ensure optimal performance, compatibility, and integration with different vehicles or equipment. Customization allows for tailoring the driveline components to specific powertrain configurations, operating conditions, torque requirements, and space constraints. Let’s explore the details of customization for driveline components:

1. Powertrain Configuration:

Driveline components can be customized to accommodate different powertrain configurations. Whether it’s a front-wheel drive, rear-wheel drive, or all-wheel drive system, manufacturers can design and provide specific components such as differentials, gearboxes, and drive shafts that are compatible with the required power distribution and torque transfer characteristics of the particular configuration.

2. Torque Capacity:

Driveline components can be customized to handle specific torque requirements. Different vehicles or equipment may have varying torque outputs based on their intended applications. Manufacturers can engineer and produce driveline components with varying torque-handling capabilities to ensure reliable and efficient power transmission for a range of applications, from passenger vehicles to heavy-duty trucks or machinery.

3. Size and Configuration:

Driveline components can be customized in terms of size, shape, and configuration to fit within the space constraints of different vehicles or equipment. Manufacturers understand that each application may have unique packaging limitations, such as limited available space or specific mounting requirements. Through customization, driveline components can be designed and manufactured to align with these specific dimensional and packaging constraints.

4. Material Selection:

The choice of materials for driveline components can be customized based on the required strength, weight, and durability characteristics. Different vehicles or equipment may demand specific material properties to optimize performance, such as lightweight materials for improved fuel efficiency or high-strength alloys for heavy-duty applications. Manufacturers can provide customized driveline components with materials selected to meet the specific performance and operational requirements.

5. Performance Optimization:

Driveline components can be customized to optimize performance in specific applications. Manufacturers can modify aspects such as gear ratios, differential configurations, or clutch characteristics to enhance acceleration, traction, efficiency, or specific performance attributes based on the intended use of the vehicle or equipment. This customization ensures that the driveline components are tailored to deliver the desired performance characteristics for the specific application.

6. Specialized Applications:

For specialized applications, such as off-road vehicles, racing cars, or industrial machinery, driveline components can be further customized to meet the unique demands of those environments. Manufacturers can develop specialized driveline components with features like enhanced cooling, reinforced construction, or increased torque capacity to withstand extreme conditions or heavy workloads.

Overall, customization of driveline components allows manufacturers to meet the specific requirements of different vehicles or equipment. From powertrain configuration to torque capacity, size and configuration, material selection, performance optimization, and specialized applications, customization ensures that driveline components are precisely designed and engineered to achieve the desired performance, compatibility, and integration with specific vehicles or equipment.

pto shaft

How do drivelines contribute to power transmission and motion in various applications?

Drivelines play a crucial role in power transmission and motion in various applications, including automotive vehicles, agricultural machinery, construction equipment, and industrial systems. They are responsible for transmitting power from the engine or power source to the driven components, enabling motion and providing the necessary torque to perform specific tasks. Here’s a detailed explanation of how drivelines contribute to power transmission and motion in various applications:

1. Automotive Vehicles: In automotive vehicles, such as cars, trucks, and motorcycles, drivelines transmit power from the engine to the wheels, enabling motion and propulsion. The driveline consists of components such as the engine, transmission, drive shafts, differentials, and axles. The engine generates power by burning fuel, and this power is transferred to the transmission. The transmission selects the appropriate gear ratio and transfers power to the drive shafts. The drive shafts transmit the power to the differentials, which distribute it to the wheels. The wheels, in turn, convert the rotational power into linear motion, propelling the vehicle forward or backward.

2. Agricultural Machinery: Drivelines are extensively used in agricultural machinery, such as tractors, combines, and harvesters. These machines require power transmission to perform various tasks, including plowing, tilling, planting, and harvesting. The driveline in agricultural machinery typically consists of a power take-off (PTO) unit, drive shafts, gearboxes, and implement shafts. The PTO unit connects to the tractor’s engine and transfers power to the drive shafts. The drive shafts transmit power to the gearboxes, which further distribute it to the implement shafts. The implement shafts drive the specific agricultural implements, enabling them to perform their intended functions.

3. Construction Equipment: Drivelines are essential in construction equipment, such as excavators, loaders, bulldozers, and cranes. These machines require power transmission to perform tasks such as digging, lifting, pushing, and hauling. The driveline in construction equipment typically consists of an engine, transmission, drive shafts, hydraulic systems, and various gear mechanisms. The engine generates power, which is transferred to the transmission. The transmission, along with the hydraulic systems and gear mechanisms, converts and controls the power to drive the different components of the equipment, allowing them to perform their specific functions.

4. Industrial Systems: Drivelines are widely used in industrial systems and machinery, including conveyor systems, manufacturing equipment, and heavy-duty machinery. These applications require power transmission for material handling, processing, and production. The driveline in industrial systems often involves electric motors, gearboxes, drive shafts, couplings, and driven components. The electric motor provides rotational power, which is transmitted through the driveline components to drive the machinery or conveyors, facilitating the desired motion and power transmission within the industrial system.

5. Power Generation: Drivelines are also employed in power generation applications, such as generators and turbines. These systems require power transmission to convert mechanical energy into electrical energy. The driveline in power generation often consists of a prime mover, such as an internal combustion engine or a steam turbine, connected to a generator. The driveline components, such as couplings, gearboxes, and drive shafts, transmit the rotational power from the prime mover to the generator, which converts it into electrical power.

6. Marine and Aerospace Applications: Drivelines are utilized in marine vessels and aerospace systems to facilitate propulsion and motion. In marine applications, drivelines transfer power from engines or turbines to propellers or water jets, enabling the vessel to move through the water. In aerospace applications, drivelines transmit power from engines to various components, such as rotors or propellers, providing the necessary thrust for flight.

In summary, drivelines are integral to power transmission and motion in a wide range of applications. They enable the transfer of power from the engine or power source to the driven components, allowing for the generation of torque and the performance of specific tasks. Drivelines play a vital role in automotive vehicles, agricultural machinery, construction equipment, industrial systems, power generation, and marine and aerospace applications, contributing to efficient power transmission, motion, and the overall functionality of these diverse systems.

China Custom Forged Alloy Steel Drive Shaft for Tractors Drive LineChina Custom Forged Alloy Steel Drive Shaft for Tractors Drive Line
editor by CX 2024-04-12

China Custom CE Certification Agricultural Wide Angle Tractor Factory Supply 6 Spline 540 Pto Drive Shaft for Bush Hog with Yoke Adapter Parts PTO Driveline

Product Description

 

CE Certification Agricultural Wide Angle Tractor Factory Supply 6 Spline 540 Pto Drive Shaft for Bush Hog with Yoke Adapter Parts

Product Description

PTO drive shaft

Brand New Replacement PTO shaft for Finish Mowers, Tillers, Spreaders, Hay Tedders and many more applications.

PTO is a series 4, rated for 40HP it has 1-3/8″ 6 spline push pin on both ends for easy installment. Complete with safety shield, The PTO measures 43″ from end to end and has an 58″ maximum extended length.

 

These PTO shafts fit the following Finish Mowers:

Bush Hog: ATH 600 and ATH 720, ATH 900, FTH 480, FTH 600, FTH 720, MTH 600, MTH 720 Series Mowers;

Landpride: FDR1548, FDR1560, FDR1572, FDR1648, FDR1660, FDR1672, FDR2548, FDR2560, FDR2572, AT2660, AT2672 Series Mowers;

Kubota: BL348A, B342A; Caroni TC480, TC590, TC710, TC910 with spline Input Shaft;

Ever-power most late models with splined input shafts, early models had some with smooth input shaft;

1. PTO Drive Shafts

PTO SHAFT WITH QUICK RELEASE YOKES AND OVER-RUNNING CLUTCH(RA), YOU CAN CHOOSE THE LENGTH
Chinabase is a professional manufacturer of PTO SHAFTS for farm machines and agricultural tractors from China. We provide more than 8 sizes of PTO shafts. There is also a full range of safety devices for agricultural applications. Our products are sold to America, Europe and all over the world. We will supply best quality products in most reasonable price.
Following are the tips how to order your PTO shafts:

2. Closed overall length (or cross to cross) of a PTO shaft.

3. Tubes or Pipes
We’ve already got Triangular profile tube and Lemon profile tube for all the series we provide.
And we have some star tube, splined tube and other profile tubes but only for a certain sizes.

4. End yokes
We’ve got 13 types of splined yokes and 8 types of plain bore yokes. I will suggest the usual type for your reference.
You can also send drawings or pictures to us if you cannot find your item in our catalog.

5. Safety devices or clutches
I will attach the details of safety devices for your reference. We’ve already have Free wheel (RA), Ratchet torque limiter(SA),
Shear bolt torque limiter(SB), 3types of friction torque limiter (FF,FFS,FCS) and overrunning couplers(adapters) (FAS).

6. For any other more special requirements with plastic guard, connection method, color of painting, package, etc., please feel free to let me know.

Tube types
 

Spline tube Lemon tube
Star tube Trigonal tube

 

Function of PTO Shaft

Drive Shaft Parts & Power Transmission

Usage of PTO Shaft

Kinds of Tractors & Farm Implements

Yoke Types for PTO Shaft

Double push pin, Bolt pins, Split pins, Pushpin, Quick release, Ball attachment, Collar…..

Processing Of Yoke

Forging

PTO Shaft Plastic Cover

YW; BW; YS; BS; Etc

Colors of PTO Shaft

Green; Orange; Yellow; Black Ect.

PTO Shaft Series

T1-T10; L1-L6;S6-S10;10HP-150HP with SA,RA,SB,SFF,WA,CV Etc

Tube Types for PTO Shaft

Lemon, Triangular, Star, Square, Hexangular, Spline, Special Ect

Processing Of Tube

Cold drawn

Spline Types for PTO Shaft

1 1/8″ Z6;1 3/8″ Z6; 1 3/8″ Z21 ;1 3/4″ Z20; 1 3/4″ Z6; 8-38*32*6 8-42*36*7; 8-48*42*8;

 

Application

 

 

Company Profile

Our factory is a leading manufacturer of PTO shaft yoke and universal joint.

 

We manufacture high quality PTO yokes for various vehicles, construction machinery and equipment. All products are constructed with rotating lighter.

 

We are currently exporting our products throughout the world, especially to North America, South America, Europe, and Russia. If you are interested in any item, please do not hesitate to contact us. We are looking CHINAMFG to becoming your suppliers in the near future.

Packaging & Shipping

 

Certifications

 

Related products

You can click the picture to learn about relevant products

Installation Instructions

 

PTO SHAFT INSTALLATION INSTRUCTION

Install assembly

1 press-fit plastic pipe and plastic cap,
2 fill the groove on the CHINAMFG with oil

3. Slide the nylon bearing into the groove 4. Align nylon bearing and plastic protective cover

Disassembly

1. remove the nylon bearing clamp (three places) with a screwdriver, and then separate the steel pipe and plastic protective cover.
2. Take off the nylon bearing from the groove of the yokes.
3. repeat the above-mentioned steps for the other side.

 

SHORTENING THE PTO DRIVESHAFT

1. Remove the safety shield.
2. Shorten the inner and outer tubes according to the required length, and the inner and outer tubes shall be shortened by the same length at 1 time
3. Deburr edges of the drive tubes with a file and remove all filings from the tubes.
4. Shorten the inner and outer plastic pipes according to the required length, and the inner and outer plastic pipes shall be
shortened by the same length at 1 time.
5. Grease the internal drive tubes and reassemble them with a safety shield.
Check the minimum and maximum length of the driveshaft installed on the machine. In working condition, the drive tubes should overlap 2/3 length and the plastic tube should never be separated

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Carbon Steel
Load: Drive Shaft
Stiffness & Flexibility: Flexible Shaft
Journal Diameter Dimensional Accuracy: IT6-IT9
Axis Shape: Straight Shaft
Shaft Shape: Real Axis
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

pto shaft

What factors should be considered when selecting the appropriate PTO driveline for an application?

When selecting the appropriate PTO (Power Take-Off) driveline for an application, several factors need to be considered to ensure optimal performance, efficiency, and safety. Here are some key factors to take into account:

1. Power Requirements:

– Determine the power requirements of the driven equipment. Consider the horsepower (HP) or kilowatt (kW) rating necessary to operate the equipment effectively. The PTO driveline should be capable of transmitting the required power without overloading or damaging the driveline components.

2. Speed and RPM:

– Identify the desired operating speed and RPM (Rotations Per Minute) of the driven equipment. The PTO driveline should be compatible with the required speed range to ensure efficient power transmission. Consider the maximum and minimum RPM ratings of the driveline and select one that matches the specific speed requirements of the application.

3. Torque Requirements:

– Determine the torque requirements of the driven equipment. Torque is the rotational force required to perform the intended task. Consider both the maximum and average torque demands during operation. Ensure that the selected PTO driveline can handle the torque levels without exceeding its maximum torque capacity or causing premature wear or failure.

4. Application Type:

– Consider the specific application and the type of equipment involved. Different applications may require different PTO driveline designs and features. For example, agricultural equipment such as mowers, balers, or tillers may benefit from a constant velocity (CV) PTO driveline to accommodate varying angles and speeds, while stationary equipment like generators or water pumps may use a non-constant velocity (non-CV) PTO driveline.

5. Safety Considerations:

– Evaluate the safety requirements of the application. Certain applications may require additional safety features such as shear bolts or slip clutches to protect against excessive loads, sudden obstructions, or torque spikes. Ensure that the selected PTO driveline incorporates the necessary safety mechanisms to prevent damage to the driveline and equipment, as well as to ensure the safety of operators and bystanders.

6. Durability and Maintenance:

– Consider the durability and maintenance requirements of the PTO driveline. Evaluate the quality and reliability of the driveline components, such as bearings, joints, and couplings. Choose a driveline that is built to withstand the demands of the application and requires minimal maintenance to ensure long-term performance and reduce downtime.

7. Compatibility:

– Ensure compatibility between the PTO driveline and the power source (e.g., tractor, engine). Consider the PTO driveline’s connection type, size (e.g., spline count, shaft diameter), and mounting configuration to ensure a proper fit and connection with the power source.

8. Environmental Conditions:

– Take into account the environmental conditions in which the PTO driveline will operate. Factors such as temperature extremes, exposure to moisture, dust, or chemicals can impact the driveline’s performance and longevity. Choose a driveline that is designed to withstand the specific environmental conditions of the application.

9. Manufacturer and Quality:

– Consider the reputation and reliability of the PTO driveline manufacturer. Opt for reputable manufacturers known for producing high-quality and durable driveline systems. Research customer reviews and seek recommendations from industry experts to ensure you choose a reliable and reputable brand.

By carefully considering these factors, you can select the most appropriate PTO driveline for your specific application. It is recommended to consult with manufacturers, industry experts, or equipment dealers to get further guidance and ensure the right driveline selection for your needs.

pto shaft

What safety precautions should operators follow when working with PTO drivelines?

Working with PTO (Power Take-Off) drivelines requires careful attention to safety due to the potential hazards associated with rotating components and high levels of torque. Operators should follow specific safety precautions to minimize the risk of accidents and injuries. Here are the key safety precautions that operators should follow when working with PTO drivelines:

1. Read and Follow Manufacturer’s Instructions:

– Operators should thoroughly read and understand the manufacturer’s instructions and safety guidelines provided for the specific PTO driveline and equipment they are operating. These instructions typically cover proper installation, operation, maintenance, and safety precautions specific to the equipment. Following the manufacturer’s guidelines ensures that the equipment is used correctly and reduces the risk of accidents.

2. Wear Appropriate Personal Protective Equipment (PPE):

– Operators should always wear the appropriate personal protective equipment (PPE) when working with PTO drivelines. This includes items such as safety glasses, protective gloves, sturdy footwear, and clothing that covers the body. PPE helps protect against flying debris, accidental contact with rotating components, and other potential hazards.

3. Ensure Proper Guarding and Shielding:

– PTO drivelines should be equipped with proper guarding and shielding to prevent accidental contact with rotating or moving parts. Operators should ensure that all guards and shields are in place and properly secured before operating the equipment. Guards and shields help contain debris, reduce the risk of entanglement, and protect against accidental contact with the driveline components.

4. Avoid Loose-Fitting Clothing and Jewelry:

– Operators should avoid wearing loose-fitting clothing, jewelry, or any other items that could get caught in the driveline components. Loose clothing or jewelry can be pulled into the rotating parts, resulting in entanglement or serious injuries. It is important to wear fitted clothing and remove any dangling accessories before operating the equipment.

5. Engage PTO Only When Necessary:

– Operators should engage the PTO only when necessary and disengage it when the equipment is not in use. Engaging the PTO while personnel are near the driveline increases the risk of accidental contact and injuries. The PTO should be engaged only when the equipment is properly set up, and all personnel are at a safe distance.

6. Be Aware of Surroundings:

– Operators should always be aware of their surroundings and ensure that no one is near the driveline before starting or operating the equipment. It is crucial to maintain a safe distance from the driveline and keep bystanders away to prevent accidental contact and injuries.

7. Shut Down Equipment Before Servicing:

– Before performing any maintenance or servicing tasks on the equipment or the PTO driveline, operators should shut down the equipment and disable the power source. This ensures that the driveline components are not in motion and reduces the risk of accidental startup or contact with moving parts.

8. Regular Maintenance and Inspection:

– Operators should adhere to a regular maintenance and inspection schedule for the PTO driveline and associated equipment. This includes checking for any signs of wear, damage, or loose connections. Regular maintenance helps identify potential issues before they become safety hazards and ensures that the driveline operates properly.

9. Receive Proper Training:

– Operators should receive proper training on the safe operation of the equipment and the PTO driveline. Training should cover topics such as equipment setup, safe operating procedures, emergency shut-off procedures, and the recognition of potential hazards. Well-trained operators are more likely to operate the equipment safely and respond appropriately in case of emergencies.

10. Follow Lockout/Tagout Procedures:

– When performing maintenance or repair tasks that require accessing the driveline components, operators should follow lockout/tagout procedures. This involves isolating the power source, applying locks and tags to prevent accidental startup, and verifying that the equipment is de-energized before beginning any work. Lockout/tagout procedures are essential for preventing unexpected energization and protecting personnel from hazardous energy.

By following these safety precautions, operators can minimize the risk of accidents and injuries when working with PTO drivelines. Safety should always be a priority, and operators should remain vigilant, adhere to proper procedures, and use common sense to ensure a safe working environment.

pto shaft

What benefits do PTO drivelines offer for tasks like tilling, mowing, and harvesting?

PTO (Power Take-Off) drivelines offer several benefits for tasks like tilling, mowing, and harvesting in agricultural operations. These benefits contribute to increased efficiency, improved productivity, and enhanced performance in these specific tasks. Let’s explore the advantages that PTO drivelines provide for each of these tasks:

Tilling:

1. Powerful and Efficient Operation: PTO drivelines enable tilling equipment, such as rotary tillers or disc harrows, to efficiently break up and prepare the soil for planting. The rotational power transmitted through the PTO shaft provides the necessary force for the tines or blades of the tiller to penetrate the soil, ensuring thorough tillage and soil preparation.

2. Uniform and Consistent Tilling: PTO-driven tillers offer consistent and uniform tilling depth and quality throughout the field. The power generated by the power source is evenly distributed through the PTO driveline, resulting in uniform tilling across the entire working width of the implement. This helps create an optimal seedbed for planting, promoting seed germination and crop growth.

3. Versatility and Adjustability: PTO drivelines allow for the use of different types and sizes of tillage implements, providing flexibility and adaptability to varying soil conditions and farming practices. Operators can easily attach and detach different tillage equipment to the PTO shaft, enabling them to switch between implements based on the specific requirements of the soil and crops.

Mowing:

1. Efficient Cutting: PTO-driven mowers, whether rotary or flail mowers, provide efficient cutting performance. The high rotational speed and power transmitted through the PTO driveline enable the mower blades to effectively cut through grass, weeds, or crops, resulting in a well-maintained and visually appealing appearance of the mowed area.

2. Wide Coverage and Reduced Time: PTO-driven mowers typically have wide cutting widths, allowing operators to cover a larger area in less time. This reduces the overall mowing time, increasing efficiency and productivity. The power transmitted through the PTO driveline facilitates the swift operation of the mower, ensuring efficient cutting even in dense vegetation.

3. Adjustable Cutting Height: PTO drivelines allow for easy adjustment of the cutting height of the mower. Operators can modify the height of the mower deck or attachment, ensuring precise cutting based on the desired aesthetic or functional requirements. This flexibility in cutting height adjustment enhances the versatility of PTO-driven mowers for various applications, such as maintaining lawns, meadows, or pastures.

Harvesting:

1. Powerful Harvesting: PTO drivelines provide the necessary power to operate harvesting equipment, such as combines, forage harvesters, or balers. The high torque and rotational power transmitted through the PTO shaft enable efficient harvesting of crops, ensuring smooth operation and reduced crop loss during the process.

2. Improved Harvesting Capacity: PTO-driven harvesting equipment often features wider headers or cutting widths, allowing for increased harvesting capacity. The power transferred through the PTO driveline enables the equipment to cover a larger area, improving overall harvesting efficiency and reducing the time required to complete the task.

3. Integration with Other Equipment: PTO drivelines facilitate the integration of various harvesting equipment with other implements or attachments. For example, a PTO-driven combine harvester can be equipped with a straw chopper or a grain cart, which can be powered by the same PTO driveline. This integration enhances the efficiency of the overall harvesting process and simplifies the logistics of crop collection and storage.

In summary, PTO drivelines offer several benefits for tasks like tilling, mowing, and harvesting. They provide powerful and efficient operation, uniform and consistent performance, versatility and adjustability, wide coverage and reduced time, adjustable cutting height, and increased harvesting capacity. These advantages contribute to improved efficiency, productivity, and performance in agricultural operations, helping farmers achieve optimal results in these critical tasks.

China Custom CE Certification Agricultural Wide Angle Tractor Factory Supply 6 Spline 540 Pto Drive Shaft for Bush Hog with Yoke Adapter Parts PTO Driveline  China Custom CE Certification Agricultural Wide Angle Tractor Factory Supply 6 Spline 540 Pto Drive Shaft for Bush Hog with Yoke Adapter Parts PTO Driveline
editor by CX 2024-04-04

China Custom Wide Angle Pto Adaptor Cardan Spline Shaft Yoke Tube Torque Limiter Universal Joint Cross Cover Agricultural Machinery Tractor Parts Pto Drive Shaft PTO Driveline

Product Description

 Wide Angle Pto Adaptor Cardan Spline Shaft Yoke Tube Torque Limiter Universal Joint cross Cover  Agricultural Machinery Tractor Parts Pto Drive Shaft 

Product Description

A PTO shaft (Power Take-Off shaft) is a mechanical component used to transfer power from a tractor or other power source to an attached implement such as a mower, tiller, or baler. The PTO shaft is typically located at the rear of the tractor and is powered by the tractor’s engine through the transmission.
The PTO shaft is designed to provide a rotating power source to the implement, allowing it to perform its intended function. The implement is connected to the PTO shaft using a universal joint, which allows for movement between the tractor and the implement while still maintaining a constant power transfer.

Here is our advantages when compare to similar products from China:
1.Forged yokes make PTO shafts strong enough for usage and working;
2.Internal sizes standard to confirm installation smooth;
3.CE and ISO certificates to guarantee to quality of our goods;
4.Strong and professional package to confirm the good situation when you receive the goods.

Product Specifications

 

 

 

SHIELD S SHIELD W

   

Packaging & Shipping

 

Company Profile

HangZhou Hanon Technology Co.,ltd is a modern enterprise specilizing in the development,production,sales and services of Agricultural Parts like PTO shaft and Gearboxes and Hydraulic parts like  Cylinder , Valve ,Gearpump and motor etc..
We adhere to the principle of ” High Quality, Customers’Satisfaction”, using advanced technology and equipments to ensure all the technical standards of transmission .We follow the principle of people first , trying our best to set up a pleasant surroundings and platform of performance for each employee. So everyone can be self-consciously active to join Hanon Machinery.

 

FAQ

1.What’re your main products?

we currently product Agricultural Parts like PTO shaft and Gearboxes and Hydraulic parts like Cylinder , Valve ,Gear pump and motor.You can check the specifications for above product on our website and you can email us to recommend needed product per your specification too.

2.What’s the lead time for a regular order?

Generally speaking, our regular standard product will need 30-45days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

3.What’s your warranty terms?

One year.

4.Can you send me a price list?

For all of our product, they are customized based on different requirements like length, ratio,voltage,and power etc. The price also varies according to annual quantity. So it’s really difficult for us to provide a price list. If you can share your detailed requirements and annual quantity, we’ll see what offer we can provide.

5.What’s the payment term? 

When we quote for you,we will confirm with you the way of transaction,FOB,CIFetc.<br> For mass production goods, you need to pay 30% deposit before producing and70% balance against copy of documents.The most common way is by T/T.  

6.How to deliver the goods to us?

Usually we will ship the goods to you by sea.

PTO Drive Shaft Parts

                                           

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Agricultural Spare Part, Agricultural Spare Part
Usage: Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying, Agricultural Machinery,Farm Tractor, Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying, Agricultural Machinery, Farm Tractor
Material: Carbon Steel, 45cr Steel, Carbon Steel
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

How do PTO drivelines accommodate variations in length and connection methods?

PTO (Power Take-Off) drivelines are designed to accommodate variations in length and connection methods to provide flexibility and compatibility with different equipment and applications. Here’s how PTO drivelines achieve this:

1. Telescoping Design:

– PTO drivelines often feature a telescoping design, allowing for adjustable length. Telescoping drivelines consist of two or more shaft sections that can slide within one another, similar to a telescope. This design enables the driveline to extend or retract to match the required length for connecting the power source (e.g., tractor) to the implement. By adjusting the length, telescoping drivelines can accommodate variations in the distance between the power source and the implement, ensuring a proper fit and efficient power transfer.

2. Splined Connections:

– PTO drivelines commonly use splined connections to ensure secure and reliable power transmission. Splines are ridges or grooves on the driveline shaft and corresponding mating components. They provide a positive engagement and torque transfer between the driving and driven shafts. Splined connections allow for variations in length and also provide some flexibility in alignment. By sliding the shaft sections within the telescoping design, operators can align the splined connections to achieve proper engagement and compensate for small misalignments.

3. Shear Pins and Slip Clutches:

– PTO drivelines incorporate shear pins or slip clutches as safety devices to protect against sudden overloads or obstructions. Shear pins are designed to break when excessive torque is applied to the driveline, preventing damage to the driveline components. Slip clutches, on the other hand, allow for controlled slippage when a certain torque threshold is exceeded. These safety mechanisms not only protect the driveline but also accommodate slight variations in length and sudden changes in load. They provide a degree of flexibility and help prevent driveline damage in case of unexpected stress or resistance.

4. Interchangeable Components:

– PTO drivelines often utilize interchangeable components, such as yokes, couplings, and adapters, to accommodate different connection methods. These components allow for compatibility between the driveline and various implements or equipment. For example, driveline yokes are available in different sizes, styles, and connection types, such as round, square, or hexagonal bores. This interchangeability enables operators to select the appropriate components that match the connection methods used by their specific equipment, ensuring a secure and proper fit.

5. Manufacturer Specifications:

– PTO drivelines are designed and manufactured according to specific standards and guidelines provided by the manufacturers. These specifications outline the maximum and minimum length requirements, connection methods, torque ratings, and other parameters necessary for safe and efficient operation. Operators should refer to the manufacturer’s guidelines and recommendations to ensure that the driveline accommodates any variations in length and connection methods within the specified limits.

6. Customization and Adaptation:

– In some cases, PTO drivelines may require customization or adaptation to accommodate unique length or connection requirements. This can involve modifying the length of the driveline shafts, using different adapters or couplings, or even ordering custom-made driveline assemblies. Consulting with driveline manufacturers, equipment suppliers, or driveline specialists can help determine the best approach for accommodating specific variations in length and connection methods.

In summary, PTO drivelines accommodate variations in length and connection methods through telescoping designs, splined connections, shear pins, slip clutches, interchangeable components, and adherence to manufacturer specifications. These features ensure flexibility, compatibility, and reliable power transfer between the power source and the implement, regardless of the specific length or connection requirements of the equipment or application.

pto shaft

How do PTO drivelines enhance the performance of tractors and agricultural equipment?

PTO (Power Take-Off) drivelines play a crucial role in enhancing the performance of tractors and agricultural equipment. By providing a reliable and versatile power source, PTO drivelines improve the functionality, efficiency, and productivity of agricultural machinery. Here are several ways in which PTO drivelines enhance the performance of tractors and agricultural equipment:

1. Power Versatility:

– PTO drivelines enable tractors and agricultural equipment to utilize a wide range of power-driven implements and attachments. By connecting to the PTO shaft of a tractor, implements such as mowers, tillers, seeders, and balers can be powered directly, eliminating the need for separate engines or motors. This versatility allows farmers to perform multiple tasks using a single power source, reducing equipment redundancy and increasing operational efficiency.

2. Increased Efficiency:

– PTO drivelines contribute to increased efficiency by providing a direct power transfer mechanism. The driveline ensures minimal power loss during transmission, resulting in more efficient utilization of available power. This efficiency leads to improved performance and reduced fuel consumption, ultimately optimizing resource utilization and lowering operating costs.

3. Flexibility in Equipment Usage:

– PTO drivelines offer flexibility in equipment usage by allowing quick and easy attachment and detachment of implements. Farmers can rapidly switch between different implements, tailoring the equipment to suit specific tasks and field conditions. This flexibility enhances productivity as it reduces downtime associated with changing equipment, enabling farmers to adapt to changing agricultural needs efficiently.

4. Time Savings:

– PTO drivelines contribute to time savings by enabling faster and more efficient completion of agricultural tasks. Machinery powered by PTO drivelines can operate at higher speeds and cover larger areas, reducing the time required for tasks such as mowing, tilling, planting, and harvesting. Additionally, the direct power transfer provided by PTO drivelines eliminates the need for manual labor or slower power transmission methods, further enhancing productivity and time efficiency.

5. Enhanced Capability:

– PTO drivelines enhance the capability of tractors and agricultural equipment by enabling them to handle a broader range of tasks and operate specialized implements. For example, PTO-driven sprayers allow precise and efficient spraying of fertilizers and pesticides, ensuring optimal crop health. PTO-driven balers enable efficient baling and packaging of hay or other forage materials. The versatility and enhanced capability provided by PTO drivelines allow farmers to expand their operations and achieve higher levels of productivity.

6. Consistent Power Delivery:

– PTO drivelines ensure consistent power delivery to agricultural equipment, resulting in consistent and uniform operation. The power from the tractor or power source is transmitted directly to the driven machinery, maintaining a steady power input. Consistent power delivery helps ensure optimum performance, reducing variations in output quality and minimizing the need for rework or adjustments.

7. Improved Safety:

– PTO drivelines contribute to improved safety by reducing the need for direct operator interaction with moving parts. Implements and machinery powered by PTO drivelines often have guards and safety features in place to protect operators from potential hazards. Additionally, the direct power transfer eliminates the need for manual belt or chain drives, reducing the risk of entanglement or mechanical failures.

8. Advanced Technology Integration:

– PTO drivelines enable the integration of advanced technologies and features into agricultural equipment. For example, PTO-driven machinery can incorporate precision farming technologies, such as GPS guidance systems, automatic controls, and variable-rate application capabilities. These technologies enhance accuracy, efficiency, and input optimization, resulting in improved performance and increased yields.

Overall, PTO drivelines significantly enhance the performance of tractors and agricultural equipment by providing a versatile power source, increasing efficiency, enabling flexibility in equipment usage, saving time, enhancing capability, ensuring consistent power delivery, improving safety, and facilitating the integration of advanced technologies. These advantages contribute to increased productivity, improved operational effectiveness, and enhanced profitability in agricultural operations.

pto shaft

Which industries and applications commonly utilize PTO drivelines for power distribution?

PTO (Power Take-Off) drivelines are widely used in various industries and applications that require the distribution of rotational power from a power source to driven equipment. The versatility and efficiency of PTO drivelines make them suitable for a range of tasks across different sectors. Let’s explore some of the industries and applications that commonly utilize PTO drivelines:

1. Agriculture:

The agriculture industry extensively relies on PTO drivelines for power distribution. Tractors equipped with PTO drivelines are commonly used to operate a wide array of implements and machinery, such as mowers, balers, harvesters, sprayers, seeders, and spreaders. PTO drivelines enable efficient power transmission for tasks like cutting, baling, spraying, planting, and spreading, contributing to the overall productivity and effectiveness of agricultural operations.

2. Construction and Earthmoving:

In the construction and earthmoving industry, PTO drivelines are utilized in heavy machinery for tasks such as excavating, grading, and material handling. Equipment like backhoes, loaders, and skid-steer loaders may feature PTO drivelines to power attachments like augers, trenchers, and hydraulic hammers. This enables these machines to perform a variety of functions efficiently, enhancing productivity on construction sites.

3. Forestry:

Forestry operations often employ PTO drivelines for power distribution in equipment used for wood processing, chipping, and mulching. Forestry mulchers, wood chippers, and stump grinders are commonly driven by PTO drivelines, allowing them to convert trees and wood waste into manageable sizes or mulch. PTO drivelines provide the necessary power to these machines, enabling efficient and effective forestry operations.

4. Landscaping and Groundskeeping:

The landscaping and groundskeeping industry extensively uses PTO drivelines for power distribution in equipment like lawn mowers, rotary cutters, and turf aerators. PTO-powered mowers can cover large areas efficiently, while rotary cutters are used for clearing brush and rough vegetation. Turf aerators equipped with PTO drivelines help maintain healthy lawns by improving soil aeration. PTO drivelines contribute to the performance and productivity of landscaping and groundskeeping tasks.

5. Utility and Municipal Services:

PTO drivelines find applications in utility and municipal services, where various equipment is used for maintenance and operations. Street sweepers, snow blowers, salt spreaders, and sewer cleaners often rely on PTO drivelines for power distribution. These machines can efficiently perform their respective tasks, such as cleaning streets, removing snow, spreading de-icing material, and maintaining sewer systems.

6. Industrial and Manufacturing:

In the industrial and manufacturing sectors, PTO drivelines are utilized in machinery and equipment for power distribution. Industrial mixers, pumps, generators, and compressors often incorporate PTO drivelines to transfer rotational power efficiently. This enables these machines to perform their specific functions, such as mixing materials, pumping fluids, generating electricity, or compressing air.

These are just a few examples of the industries and applications that commonly utilize PTO drivelines for power distribution. The versatility and efficiency of PTO drivelines make them suitable for a wide range of tasks, enabling power to be harnessed from a power source and efficiently distributed to driven equipment. PTO drivelines significantly contribute to the productivity and functionality of machinery in various sectors, enhancing overall operational efficiency.

China Custom Wide Angle Pto Adaptor Cardan Spline Shaft Yoke Tube Torque Limiter Universal Joint Cross Cover Agricultural Machinery Tractor Parts Pto Drive Shaft PTO Driveline  China Custom Wide Angle Pto Adaptor Cardan Spline Shaft Yoke Tube Torque Limiter Universal Joint Cross Cover Agricultural Machinery Tractor Parts Pto Drive Shaft PTO Driveline
editor by CX 2024-03-26

China Custom CZPT Delong Axle Cross Joint Pto Drive Shaft for Power Transmission Dz9114315147 PTO Driveline

Product Description

Shacman Delong Axle  Cross Joint Pto Drive Shaft for Power Transmission DZ9114315147
 

 

DZ9114315147      L=1470MM
DZ9114315126      L=1260MM
DZ9114315128      L=1280MM
DZ9114315156      L=1560MM
DZ9114315160      L=1600MM
DZ9114315164      L=1640MM

 

Product advantages & features

(1) Thickened shaft tube, thickened universal joint, impact toughness and fatigue resistance.

(2) Machining by machining center, standard size and stable quality.

(3) Single inspection out of the warehouse to ensure 100% qualified products out of the warehouse.

(4) Adjust the dynamic balance test when leaving the warehouse to ensure its loading stability.
 

Our inventory

More Products

Truck Model Sinotruk, Shacman, CHINAMFG Auman, CHINAMFG Xihu (West Lake) Dis., Xihu (West Lake) Dis.feng, Xihu (West Lake) Dis.feng Liuqi Balong, North BENZ( BEIBEN), C&C, JAC, etc.
Product catalogue Axle Wheel Assembly
Differential Assembly
Main Reducer Assembly
Inner Ring Gear& Bracket
Basin Angle Gear/ Bevel Gear
Axle Shaft/ Half Shaft & Through Shaft
Axle Housing& Axle Assembly
Steering knuckle & Front Axle
Gear
Brake Drum& Wheel Hub
Flange
Bearing
Main Reducer Housing
Oil Seal Seat
Nut& Shim Series
Brake Backing Plate
Chassis Support Products Leaf Spring Bracket
Drop Arm Series
Bracket Series
Leaf Spring Shackle Series
Balanced Suspension Series Balance Shaft Assembly
Balance Shaft Housing
Axle Spring Seat
Thrust Rod
Balance Shaft Parts
Shock Absorber Series Shock Absorber
Shock Absorbing Airbag
Steering System Power Steering Pump
Power Steering Gear
Rubber Products Oil Seal
Rubber Support
Thrust Rod Rubber Core
Truck Belt
Engine support
Other
Clutch Series Clutch Pressure Plate
Clutch Disc
Flywheel Assembly
Flywheel Ring Gear
Adjusting Arm Series  

 

Packaging & Shipping

FAQ

Q1. How about price of products?
The price is negotiable.It can be changed according to your quantity or package. When you are making an inquiry, please let us know the quantity you want.
Please provide the exact or approximate quantity, packing details, destination port or special requirements, so we could give you the price accordingly.

Q2. What is the products delivery time?
Generally, it will take 3 to 10 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q3.Do you test all your goods before delivery?
Yes,we have 100% test before delivery.

Q4.What is your terms of payment?
By TT or We’ll show you the photos of the products and packages before you pay the balance.

Q5. Do you accept third party inspection?
Yes,we do.

Q6. Are you a factory or trading company?
We are a factory integrating research, development, production and sales.

Certifications

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Steel
Load: Drive Shaft
Stiffness & Flexibility: Flexible Shaft
Samples:
US$ 175/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

Can PTO drivelines be adapted for use in both agricultural and industrial settings?

Yes, PTO (Power Take-Off) drivelines can be adapted for use in both agricultural and industrial settings. PTO drivelines are versatile and widely utilized in various applications, including agricultural machinery, construction equipment, forestry machinery, and industrial machinery. Let’s explore how PTO drivelines can be adapted for different settings:

1. Agricultural Settings:

– PTO drivelines have been extensively used in agriculture for decades. They are commonly found in tractors, combine harvesters, balers, mowers, and other agricultural equipment. In agricultural settings, PTO drivelines are primarily used to transfer power from the tractor’s engine to various implements, such as rotary cutters, grain augers, pumps, and sprayers. These drivelines are designed to withstand the demanding conditions typically encountered in agricultural operations, including exposure to dust, debris, and uneven terrain. PTO drivelines for agriculture often feature durable construction, robust components, and protective measures such as shields and guards to ensure operator safety and reliable power transfer.

2. Industrial Settings:

– PTO drivelines can also be adapted for use in industrial settings. Industrial machinery, such as generators, pumps, compressors, and conveyors, often require a power source to drive their operations. PTO drivelines can be employed to transfer power from an engine or motor to these industrial machines. However, certain modifications and adaptations may be necessary to suit the specific requirements of the industrial application. This can include adjusting the speed and torque output of the driveline, incorporating specialized couplings or adapters, and implementing additional safety features to meet industrial safety standards. PTO drivelines used in industrial settings are typically designed to withstand heavy loads, continuous operation, and robust working conditions.

3. Adaptability and Compatibility:

– One of the advantages of PTO drivelines is their adaptability and compatibility with various equipment and machinery. The standardized nature of PTO shafts and connections allows for easy interchangeability between different implements and machines, regardless of whether they are used in agricultural or industrial settings. This interchangeability enables farmers, contractors, and operators to utilize the same PTO driveline across different equipment, reducing the need for multiple drivelines and enhancing operational efficiency. However, it is essential to ensure that the driveline’s specifications, such as torque rating, speed rating, and size, are compatible with the specific requirements of the equipment and application.

4. Considerations for Adaptation:

– When adapting PTO drivelines for different settings, it is crucial to consider factors such as power requirements, operating conditions, safety regulations, and equipment compatibility. The specific needs of the application, including the torque, speed, and operating angles, should be carefully evaluated to choose the appropriate driveline components and configurations. It may be necessary to consult equipment manufacturers, engineers, or experts in driveline systems to ensure proper adaptation and compatibility.

5. Safety and Efficiency:

– Regardless of the setting, safety and efficiency remain paramount when adapting PTO drivelines. Safety measures, such as shields, guards, shear pins, slip clutches, and overload protection devices, should be incorporated to protect operators and prevent accidents. Regular maintenance and inspections are essential to ensure the driveline’s optimal performance and longevity. Lubrication, alignment, and proper usage practices should be followed to maximize efficiency and reduce wear and tear.

In conclusion, PTO drivelines can be adapted for use in both agricultural and industrial settings. Their versatility, compatibility, and interchangeability make them suitable for a wide range of applications. By considering the specific requirements of the setting, incorporating necessary adaptations, and prioritizing safety and efficiency, PTO drivelines can deliver reliable power transfer in various agricultural and industrial environments.

pto shaft

Can you provide examples of machinery that utilize PTO drivelines for power transmission?

PTO (Power Take-Off) drivelines are widely used in various agricultural and industrial applications to transmit power from a power source, such as a tractor or engine, to driven machinery. Here are several examples of machinery that commonly utilize PTO drivelines for power transmission:

1. Agricultural Equipment:

– Tractor Implements: Numerous agricultural implements rely on PTO drivelines to receive power for their operation. Examples include rotary cutters, flail mowers, disc harrows, tillers, seeders, fertilizer spreaders, sprayers, hay balers, hay rakes, and hay tedders. These implements connect to the PTO shaft of a tractor, harnessing its power to perform tasks such as cutting, tilling, sowing, fertilizing, spraying, baling, and raking.

– Harvesting Equipment: Machinery used in harvesting, such as combines, forage harvesters, and grain augers, often utilize PTO drivelines to power their cutting and conveying mechanisms. The PTO driveline powers components like the cutter heads, threshing systems, and grain handling equipment, allowing for efficient harvesting and processing of crops.

– Forage and Silage Equipment: Equipment used for forage and silage production, including forage choppers, silage blowers, and silage wagons, commonly incorporate PTO drivelines. The driveline provides power for cutting and chopping forage crops and conveying them into storage or transport units.

– Irrigation Systems: PTO-driven irrigation systems, such as irrigation pumps and sprinkler systems, utilize PTO drivelines to power the pumps and drive the water distribution mechanisms. The PTO driveline allows for efficient water supply and irrigation in agricultural fields.

2. Construction and Earthmoving Equipment:

– Earth Augers: Earth augers used in construction and landscaping applications often rely on PTO drivelines for power transmission. PTO-driven augers are used for digging holes and installing posts, fences, and foundations.

– Post Hole Diggers: Post hole diggers, commonly used in fencing and construction projects, utilize PTO drivelines for power transmission. The driveline powers the digging mechanism, allowing for efficient digging of holes for post installation.

3. Industrial Equipment:

– Wood Chippers: Wood chippers used in the forestry and landscaping industries often incorporate PTO drivelines for power transmission. The PTO driveline powers the cutting and chipping mechanisms, enabling efficient processing of branches, logs, and other woody materials.

– Generators: PTO-driven generators are commonly used as backup power sources or in remote locations where electrical power is not readily available. The PTO driveline powers the generator, converting mechanical power into electrical power.

– Stationary Pumps: PTO drivelines are utilized in stationary pumps, such as water pumps, slurry pumps, and trash pumps. The PTO driveline drives the pump, allowing for the efficient transfer or movement of liquids or slurry.

– Industrial Mixers: PTO-driven mixers are used in various industries, including agriculture, food processing, and construction. The PTO driveline powers the mixing mechanism, facilitating the blending or agitation of materials.

– Hay Grinders: Hay grinders or tub grinders used in the agricultural and livestock industries often incorporate PTO drivelines for power transmission. The driveline powers the grinding mechanism, allowing for the processing of hay, straw, and other forage materials.

4. Specialty Equipment:

– Ice Resurfacers: Ice resurfacing machines, commonly used in ice rinks and winter sports facilities, often utilize PTO drivelines for power transmission. The driveline powers the ice resurfacing mechanism, ensuring a smooth and level ice surface.

– Snowblowers: Snowblowers or snow throwers used in snow removal operations can be equipped with PTO drivelines to power their cutting and throwing mechanisms. The PTO driveline enables efficient snow clearing by propelling and discharging snow.

– Street Sweepers: PTO-driven street sweepers are used for cleaning streets, parking lots, and other paved surfaces. The PTO driveline powers the sweeping brushes and collection system, facilitating effective debris removal.

These examples demonstrate the wide range of machinery that utilize PTO drivelines for power transmission in various industries. PTO drivelines provide a versatile and efficient means of transferring power, allowing for the operation of diverse equipment with a common power source.

pto shaft

Which industries and applications commonly utilize PTO drivelines for power distribution?

PTO (Power Take-Off) drivelines are widely used in various industries and applications that require the distribution of rotational power from a power source to driven equipment. The versatility and efficiency of PTO drivelines make them suitable for a range of tasks across different sectors. Let’s explore some of the industries and applications that commonly utilize PTO drivelines:

1. Agriculture:

The agriculture industry extensively relies on PTO drivelines for power distribution. Tractors equipped with PTO drivelines are commonly used to operate a wide array of implements and machinery, such as mowers, balers, harvesters, sprayers, seeders, and spreaders. PTO drivelines enable efficient power transmission for tasks like cutting, baling, spraying, planting, and spreading, contributing to the overall productivity and effectiveness of agricultural operations.

2. Construction and Earthmoving:

In the construction and earthmoving industry, PTO drivelines are utilized in heavy machinery for tasks such as excavating, grading, and material handling. Equipment like backhoes, loaders, and skid-steer loaders may feature PTO drivelines to power attachments like augers, trenchers, and hydraulic hammers. This enables these machines to perform a variety of functions efficiently, enhancing productivity on construction sites.

3. Forestry:

Forestry operations often employ PTO drivelines for power distribution in equipment used for wood processing, chipping, and mulching. Forestry mulchers, wood chippers, and stump grinders are commonly driven by PTO drivelines, allowing them to convert trees and wood waste into manageable sizes or mulch. PTO drivelines provide the necessary power to these machines, enabling efficient and effective forestry operations.

4. Landscaping and Groundskeeping:

The landscaping and groundskeeping industry extensively uses PTO drivelines for power distribution in equipment like lawn mowers, rotary cutters, and turf aerators. PTO-powered mowers can cover large areas efficiently, while rotary cutters are used for clearing brush and rough vegetation. Turf aerators equipped with PTO drivelines help maintain healthy lawns by improving soil aeration. PTO drivelines contribute to the performance and productivity of landscaping and groundskeeping tasks.

5. Utility and Municipal Services:

PTO drivelines find applications in utility and municipal services, where various equipment is used for maintenance and operations. Street sweepers, snow blowers, salt spreaders, and sewer cleaners often rely on PTO drivelines for power distribution. These machines can efficiently perform their respective tasks, such as cleaning streets, removing snow, spreading de-icing material, and maintaining sewer systems.

6. Industrial and Manufacturing:

In the industrial and manufacturing sectors, PTO drivelines are utilized in machinery and equipment for power distribution. Industrial mixers, pumps, generators, and compressors often incorporate PTO drivelines to transfer rotational power efficiently. This enables these machines to perform their specific functions, such as mixing materials, pumping fluids, generating electricity, or compressing air.

These are just a few examples of the industries and applications that commonly utilize PTO drivelines for power distribution. The versatility and efficiency of PTO drivelines make them suitable for a wide range of tasks, enabling power to be harnessed from a power source and efficiently distributed to driven equipment. PTO drivelines significantly contribute to the productivity and functionality of machinery in various sectors, enhancing overall operational efficiency.

China Custom CZPT Delong Axle Cross Joint Pto Drive Shaft for Power Transmission Dz9114315147 PTO Driveline  China Custom CZPT Delong Axle Cross Joint Pto Drive Shaft for Power Transmission Dz9114315147 PTO Driveline
editor by CX 2024-03-14

China Standard Custom CNC Machining Turning Spline Bolt Nut Hollow Threaded Spindle Gear Steel Propeller Drive Shaft of Motorcycle Electric Motor Auto Generator Transmission Drive Line

Product Description

 

Basic Info. of Our Customized CNC Machining Parts
Quotation According To Your Drawings or Samples. (Size, Material, Thickness, Processing Content And Required Technology, etc.)
Tolerance  +/-0.005 – 0.01mm (Customizable)
Surface Roughness Ra0.2 – Ra3.2 (Customizable)
Materials Available Aluminum, Copper, Brass, Stainless Steel, Titanium, Iron, Plastic, Acrylic, PE, PVC, ABS, POM, PTFE etc.
Surface Treatment Polishing, Surface Chamfering, Hardening and Tempering, Nickel plating, Chrome plating, zinc plating, Laser engraving, Sandblasting, Passivating, Clear Anodized, Color Anodized, Sandblast Anodized, Chemical Film, Brushing, etc.
Processing Hot/Cold forging, Heat treatment, CNC Turning, Milling, Drilling and Tapping, Surface Treatment, Laser Cutting, Stamping, Die Casting, Injection Molding, etc.
Testing Equipment Coordinate Measuring Machine (CMM) / Vernier Caliper/ / Automatic Height Gauge /Hardness Tester /Surface Roughness Teste/Run-out Instrument/Optical Projector, Micrometer/ Salt spray testing machine
Drawing Formats PRO/E, Auto CAD, CZPT Works , UG, CAD / CAM / CAE, PDF
Our Advantages 1.) 24 hours online service & quickly quote and delivery.
2.) 100% quality inspection (with Quality Inspection Report) before delivery. All our products are manufactured under ISO 9001:2015.
3.) A strong, professional and reliable technical team with 16+ years of manufacturing experience.
4.) We have stable supply chain partners, including raw material suppliers, bearing suppliers, forging plants, surface treatment plants, etc.
5.) We can provide customized assembly services for those customers who have assembly needs.

 

Available Material
Stainless Steel    SS201,SS301, SS303, SS304, SS316, SS416, etc.
Steel    mild steel, Carbon steel, 4140, 4340, Q235, Q345B, 20#, 45#, etc.
Brass    HPb63, HPb62, HPb61, HPb59, H59, H62, H68, H80, etc.
Copper     C11000, C12000,C12000, C36000 etc.
Aluminum     A380, AL2571, AL6061, Al6063, AL6082, AL7075, AL5052, etc.
Iron     A36, 45#, 1213, 12L14, 1215 etc.
Plastic     ABS, PC, PE, POM, Delrin, Nylon, PP, PEI, Peek etc.
Others     Various types of Titanium alloy, Rubber, Bronze, etc.

Available Surface Treatment
Stainless Steel Polishing, Passivating, Sandblasting, Laser engraving, etc.
Steel Zinc plating, Oxide black, Nickel plating, Chrome plating, Carburized, Powder Coated, etc.
Aluminum parts Clear Anodized, Color Anodized, Sandblast Anodized, Chemical Film, Brushing, Polishing, etc.
Plastic Plating gold(ABS), Painting, Brushing(Acylic), Laser engraving, etc.

FAQ:

Q1: Are you a trading company or a factory?
A1: We are a factory

Q2: How long is your delivery time?
A2: Samples are generally 3-7 days; bulk orders are 10-25 days, depending on the quantity and parts requirements.

Q3: Do you provide samples? Is it free or extra?
A3: Yes, we can provide samples, and we will charge you based on sample processing. The sample fee can be refunded after placing an order in batches.

Q4: Do you provide design drawings service?
A4: We mainly customize according to the drawings or samples provided by customers. For customers who don’t know much about drawing, we also   provide design and drawing services. You need to provide samples or sketches.

Q5: What about drawing confidentiality?
A5: The processed samples and drawings are strictly confidential and will not be disclosed to anyone else.

Q6: How do you guarantee the quality of your products?
A6: We have set up multiple inspection procedures and can provide quality inspection report before delivery. And we can also provide samples for you to test before mass production.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, RoHS, GS, ISO9001
Standard: DIN, ASTM, GOST, GB, JIS, ANSI, BS
Customized: Customized
Material: Metal
Application: Metal Recycling Machine, Metal Cutting Machine, Metal Straightening Machinery, Metal Spinning Machinery, Metal Processing Machinery Parts, Metal forging Machinery, Metal Engraving Machinery, Metal Drawing Machinery, Metal Coating Machinery, Metal Casting Machinery
Tolerance: +/-0.005 – 0.01mm
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

Are there different types of driveline configurations based on vehicle type?

Yes, there are different types of driveline configurations based on the type of vehicle. Driveline configurations vary depending on factors such as the vehicle’s propulsion system, drivetrain layout, and the number of driven wheels. Here’s a detailed explanation of the driveline configurations commonly found in different vehicle types:

1. Front-Wheel Drive (FWD):

In front-wheel drive vehicles, the driveline configuration involves the engine’s power being transmitted to the front wheels. The engine, transmission, and differential are typically integrated into a single unit called a transaxle, which is located at the front of the vehicle. This configuration simplifies the drivetrain layout, reduces weight, and improves fuel efficiency. Front-wheel drive is commonly found in passenger cars, compact cars, and some crossover SUVs.

2. Rear-Wheel Drive (RWD):

Rear-wheel drive vehicles have their driveline configuration where the engine’s power is transmitted to the rear wheels. In this setup, the engine is located at the front of the vehicle, and the drivetrain components, including the transmission and differential, are positioned at the rear. Rear-wheel drive provides better weight distribution, improved handling, and enhanced performance characteristics, making it popular in sports cars, luxury vehicles, and large trucks.

3. All-Wheel Drive (AWD) and Four-Wheel Drive (4WD):

All-wheel drive and four-wheel drive driveline configurations involve power being transmitted to all four wheels of the vehicle. These configurations provide better traction and handling in various driving conditions, particularly on slippery or off-road surfaces. AWD systems distribute power automatically between the front and rear wheels, while 4WD systems are often manually selectable and include a transfer case for shifting between 2WD and 4WD modes. AWD and 4WD configurations are commonly found in SUVs, crossovers, trucks, and off-road vehicles.

4. Front Engine, Rear-Wheel Drive (FR) and Rear Engine, Rear-Wheel Drive (RR):

In certain performance vehicles and sports cars, driveline configurations may involve a front engine with rear-wheel drive (FR) or a rear engine with rear-wheel drive (RR). FR configurations have the engine located at the front of the vehicle, transmitting power to the rear wheels. RR configurations have the engine located at the rear, driving the rear wheels. These configurations provide excellent balance, weight distribution, and handling characteristics, resulting in enhanced performance and driving dynamics.

5. Other Configurations:

There are also various specialized driveline configurations based on specific vehicle types and applications:

  • Mid-Engine: Some high-performance sports cars and supercars feature a mid-engine configuration, where the engine is positioned between the front and rear axles. This configuration offers exceptional balance, handling, and weight distribution.
  • Front-Engine, Front-Wheel Drive (FF): While less common, certain compact and economy cars employ a front-engine, front-wheel drive configuration. This layout simplifies packaging and interior space utilization.
  • Part-Time 4WD: In certain off-road vehicles, there may be a part-time 4WD driveline configuration. These vehicles typically operate in 2WD mode but can engage 4WD when additional traction is needed.

These are some of the driveline configurations commonly found in different vehicle types. The choice of driveline configuration depends on factors such as the vehicle’s intended use, performance requirements, handling characteristics, and specific design considerations.

pto shaft

What safety precautions should be followed when working with driveline components?

Working with driveline components requires careful attention to safety to prevent accidents, injuries, and damage to equipment. Driveline components, such as transmissions, drive shafts, and differentials, can involve rotating parts, high torque, and heavy machinery, making it essential to follow proper safety precautions. Here are some important safety measures to consider when working with driveline components:

1. Personal Protective Equipment (PPE):

Always wear appropriate personal protective equipment, including safety glasses, gloves, and protective clothing. PPE helps protect against potential hazards such as flying debris, sharp edges, and contact with hot or moving parts. Use steel-toed safety boots to protect your feet from heavy objects or accidental impacts.

2. Lockout/Tagout:

Prior to working on driveline components, follow lockout/tagout procedures to ensure the equipment is properly shut down and isolated from its power source. Lockout/tagout involves disconnecting power, applying locks or tags to control switches, and verifying that the equipment is de-energized. This prevents accidental startup or release of stored energy that could cause serious injuries.

3. Vehicle/Equipment Stability:

Ensure that the vehicle or equipment is stable and securely supported before working on driveline components. Use appropriate jack stands or hoists to provide a stable and reliable support structure. Never rely solely on hydraulic jacks or unstable supports, as they can lead to accidents or equipment damage.

4. Proper Lifting Techniques:

When handling heavy driveline components, use proper lifting techniques to prevent strains or injuries. Lift with your legs, not your back, and get assistance when dealing with heavy or bulky components. Use mechanical lifting aids, such as hoists or cranes, when necessary to avoid overexertion or dropping components.

5. Component Inspection:

Prior to installation or maintenance, carefully inspect driveline components for any signs of damage, wear, or corrosion. Replace any worn or damaged parts to ensure safe and reliable operation. Follow the manufacturer’s guidelines and specifications for component inspection, maintenance, and replacement intervals.

6. Proper Tools and Equipment:

Use the correct tools and equipment for the job. Improper tools or makeshift solutions can lead to accidents, damaged components, or stripped fasteners. Follow the manufacturer’s recommendations for specialized tools or equipment needed for specific driveline components.

7. Follow Service Manuals and Procedures:

Refer to the relevant service manuals and follow proper procedures when working on driveline components. Service manuals provide step-by-step instructions, torque specifications, and safety precautions specific to the vehicle or equipment you are working on. Adhering to these guidelines ensures proper disassembly, installation, and adjustment of driveline components.

8. Proper Disposal of Fluids and Waste:

Dispose of fluids, such as oil or coolant, and waste materials in accordance with local regulations. Spilled fluids can create slip hazards, and improper disposal can harm the environment. Use appropriate containers and disposal methods as prescribed by local laws and regulations.

9. Training and Knowledge:

Ensure that individuals working with driveline components have received proper training and possess the necessary knowledge and skills. Inadequate training or lack of knowledge can lead to errors, accidents, or improper installation, compromising safety and performance.

10. Follow Workplace Safety Regulations:

Adhere to workplace safety regulations and guidelines established by relevant authorities. These regulations may include specific requirements for working with driveline components, such as safety standards, training requirements, and equipment certifications. Stay updated on safety regulations and ensure compliance to maintain a safe working environment.

By following these safety precautions, individuals can minimize the risk of accidents, injuries, and equipment damage when working with driveline components. Safety should always be a top priority to promote a secure and productive work environment.

pto shaft

What benefits do drivelines offer for different types of vehicles and equipment?

Drivelines offer several benefits for different types of vehicles and equipment across various industries. They play a critical role in power transmission, mobility, efficiency, and overall performance. Here’s a detailed explanation of the benefits drivelines offer for different types of vehicles and equipment:

1. Power Transmission: Drivelines are designed to efficiently transmit power from the engine or power source to the driven components, such as wheels, tracks, implements, or machinery. They ensure the smooth transfer of torque, allowing vehicles and equipment to generate the necessary power for propulsion, lifting, hauling, or other tasks. By effectively transmitting power, drivelines maximize the performance and productivity of vehicles and equipment.

2. Mobility and Maneuverability: Drivelines enable vehicles and equipment to achieve mobility and maneuverability across various terrains and working conditions. By transmitting power to the wheels or tracks, drivelines provide the necessary traction and control to overcome obstacles, navigate uneven surfaces, and operate in challenging environments. They contribute to the overall stability, handling, and agility of vehicles and equipment, allowing them to move efficiently and safely.

3. Versatility and Adaptability: Drivelines offer versatility and adaptability for different types of vehicles and equipment. They can be designed and configured to meet specific requirements, such as front-wheel drive, rear-wheel drive, four-wheel drive, or all-wheel drive systems. This flexibility allows vehicles and equipment to adapt to various operating conditions, including normal roads, off-road terrains, agricultural fields, construction sites, or industrial facilities. Drivelines also accommodate different power sources, such as internal combustion engines, electric motors, or hybrid systems, enhancing the adaptability of vehicles and equipment.

4. Efficiency and Fuel Economy: Drivelines contribute to efficiency and fuel economy in vehicles and equipment. They optimize power transmission by utilizing appropriate gear ratios, minimizing energy losses, and improving overall system efficiency. Drivelines with advanced technologies, such as continuously variable transmissions (CVTs) or automated manual transmissions (AMTs), can further enhance efficiency by continuously adjusting gear ratios based on load and speed conditions. Efficient driveline systems help reduce fuel consumption, lower emissions, and maximize the operational range of vehicles and equipment.

5. Load Carrying Capacity: Drivelines are designed to handle and transmit high torque and power, enabling vehicles and equipment to carry heavy loads. They incorporate robust components, such as heavy-duty axles, reinforced drive shafts, and durable differentials, to withstand the demands of load-bearing applications. Drivelines ensure the reliable transmission of power, allowing vehicles and equipment to transport materials, tow trailers, or carry payloads efficiently and safely.

6. Safety and Control: Drivelines contribute to safety and control in vehicles and equipment. They enable precise control over acceleration, deceleration, and speed, enhancing driver or operator confidence and maneuverability. Drivelines with features like traction control systems, limited-slip differentials, or electronic stability control provide additional safety measures by improving traction, stability, and handling in challenging road or operating conditions. By ensuring optimal power distribution and control, drivelines enhance the overall safety and stability of vehicles and equipment.

7. Durability and Reliability: Drivelines are built to withstand harsh operating conditions and provide long-term durability and reliability. They are engineered with high-quality materials, precise manufacturing processes, and advanced technologies to ensure the driveline components can endure the stresses of power transmission. Well-designed drivelines require minimal maintenance, reducing downtime and enhancing the overall reliability of vehicles and equipment.

8. Specialized Functionality: Drivelines offer specialized functionality for specific types of vehicles and equipment. For example, in off-road vehicles or heavy-duty construction equipment, drivelines with features like differential locks, torque vectoring, or adjustable suspension systems provide enhanced traction, stability, and control. In agricultural machinery, drivelines with power take-off (PTO) units enable the connection of various implements for specific tasks like plowing, seeding, or harvesting. Such specialized driveline features enhance the performance and versatility of vehicles and equipment in their respective applications.

In summary, drivelines provide numerous benefits for different types of vehicles and equipment. They ensure efficient power transmission, facilitate mobility and maneuverability, offer versatility and adaptability, contribute to efficiency and fuel economy, handle heavy loads, enhance safety and control, provide durability and reliability, and offer specialized functionality. By incorporating well-designed drivelines, manufacturers can optimize the performance, productivity, and overall functionality of vehicles and equipment across various industries.

China Standard Custom CNC Machining Turning Spline Bolt Nut Hollow Threaded Spindle Gear Steel Propeller Drive Shaft of Motorcycle Electric Motor Auto Generator Transmission Drive LineChina Standard Custom CNC Machining Turning Spline Bolt Nut Hollow Threaded Spindle Gear Steel Propeller Drive Shaft of Motorcycle Electric Motor Auto Generator Transmission Drive Line
editor by CX 2024-03-12

China Custom 81.39126-6044 65*172mm Drive Shaft Universal Joint Pin Drive Shaft Cross Shaft for Man Truck Spare Parts Drive Line

Product Description

81.39126-6044 65*172mm Drive shaft universal joint pin Drive shaft cross shaft for MAN truck spare parts

Product Description

 

The rotating shaft is the main component that transmits the driving force in the vehicle rotating system. Its function is to transmit the driving force of the vehicle engine to the wheels together with the transmission and driver, so as to cause the driving force of the vehicle. It is a rotor line with high speed rotation and low support point, so its rotor dynamic balance is very important.

81.39126-6044 65*172mm Drive shaft universal joint pin Drive shaft cross shaft for MAN truck spare parts

1. original quality,and low price.
2. High temperature resistance and strong wear resistance.
3. The brake is sensitive and durable.
4. High quality, no abnormal noise.
5. A variety of quality, source factory, can accept customization.

Specification

item

value

OE NO.

81.39126-6044

Size

65*172mm

Warranty

3 months

Place of CZPT

ZheJiang ,China

Brand Name

CZPT

Car Model

MAN truck

Material

Steel

Product

Drive shaft universal joint pin Drive shaft cross shaft

MOQ

10 PCS

Packing

Wooden Case

Quality

100% Tested

Delivery time

1-7 Working Days

Payment Terms

T/T

Condition

100%new

SHIPPING

AIR SEA Express Delivery

 

Packaging & Shipping

 

 

1.To better ensure the safety of your goods, professional, environmentally friendly, convenient and efficient packaging services will be provided.

Details: Our packing uses export wooden cases, plastic boxes, cartons or pallets. All the package are very strong, the wooden box is firmly bound, the package is covered with a waterproof film to prevent water or damage during transportation.Before packing, we can also stick corresponding labels and shipping marks according to your needs. All our goods are well packed.

2. According to the quantity, we can use express delivery, air transportation or CZPT transportation, automobile transportation, railway transportation, etc.

we have our own freight forwarders, and we can also use the designated freight forwarders of customers, which can meet various delivery requirements of customers, such as EXW, FOB, CIF, etc.It can also be exported from many ports in China. Such as HangZhou port, HangZhou port, HangZhou port, ZheJiang port, HangZhou River and HangZhou in China.

3. We can also send the goods by express if the customers have less goods.
According to customer’s request, we can use express.such as DHL, TNT, EMS, FedEx, etc. the delivery time is 3-7. Safe, fast and convenient. It’s also a good choice for you.

Certifications

 

 

HangZhou CZPT International Trade Co., Ltd. was established in 2003. It has been engaged in the export of auto parts and construction machinery parts for 8 years. Our main business is to export truck parts and construction machinery parts to Russia,Europe and Southeast Asia, such as SINOTRUK, Shaanqi, Xihu (West Lake) Dis., XCMG, Shantui, JAC, Cummins, JCB, caterpillar, Isuzu,Yanmar, lgmg, CZPT The company has its own warehouse in HangZhou, covering an area of 2000 square meters, and has a lot of inventory,and has the ability to quickly collect and deliver accessories. Warehouse inventory is huge, and many kinds, to meet your various needs.We always adhere to the quality of products as the core, to serve customers for the purpose. Hope to be able to better communicate with friends from all over the world.
 

Company Profile

Carman International Trade Co, Ltd. Ia an import and export company that founded in 2013, setting up with the approval of Ministry of Commerce. Based on good faith and pursuit of mutual benefit, we supply Diesel engine spare parts for many domestic retailers and wholesalers, what’s more, our products are sold well to Japan, Korean, Malaysia, Indonesia, Germany, Russian, Turkey,Iran,Brazil, Peru, as well as other countries in the Middle East, and Africa etc.The company has a number of diligent and advanced marketing and management experience of employees, for our customers to provide more professional, humane services.

At the same time, the company vigorously develop advantageous products, integration and optimization of sales channels, in order to ensure quality at the same time, but also for dealers to retain a more careful profit margins. The company has innovative sales concept, high standards of product quality management as the basis, market as a guide, customer satisfaction as the criterion, the implementation of standardized customer service, forming a unique culture of high-quality service, customer service will fully implement the “customer guide, service value-added” strategy, in line with people-oriented, abide by the credibility, brand management, quality first, user first principle, so that more customers enjoy intimate service.

 

FAQ

1. who are we?
We are based in ZheJiang , China, start from 2013,sell to Mid East(50.00%),Eastern Europe(20.00%),Eastern Asia(10.00%),South America(7.00%),Southeast Asia(5.00%),Africa(4.00%),North America(3.00%),Domestic Market(00.00%). There are total about 11-50 people in our office.

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.what can you buy from us?
Heavy Truck Parts and Construction Machinery Parts/Filter/Turbocharger/Clutch Disc/Clutch Cover/Water Pump/Truck Chassis Parts

4. why should you buy from us not from other suppliers?
HangZhou CZPT International Trade Co., Ltd. is located in HangZhou city, the capital of ZheJiang Province. Main products are heavy truck accessories, light truck parts, engineering machinery parts and so on. We have perfect service system.

5. what services can we provide?
Accepted Delivery Terms: 3-7days
Accepted Payment Currency:T/T
Accepted Payment Type:T/T
Language Spoken:English

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 3 Months
Warranty: 3 Months
Type: Exhaust System
Samples:
US$ 25/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

Are there different types of driveline configurations based on vehicle type?

Yes, there are different types of driveline configurations based on the type of vehicle. Driveline configurations vary depending on factors such as the vehicle’s propulsion system, drivetrain layout, and the number of driven wheels. Here’s a detailed explanation of the driveline configurations commonly found in different vehicle types:

1. Front-Wheel Drive (FWD):

In front-wheel drive vehicles, the driveline configuration involves the engine’s power being transmitted to the front wheels. The engine, transmission, and differential are typically integrated into a single unit called a transaxle, which is located at the front of the vehicle. This configuration simplifies the drivetrain layout, reduces weight, and improves fuel efficiency. Front-wheel drive is commonly found in passenger cars, compact cars, and some crossover SUVs.

2. Rear-Wheel Drive (RWD):

Rear-wheel drive vehicles have their driveline configuration where the engine’s power is transmitted to the rear wheels. In this setup, the engine is located at the front of the vehicle, and the drivetrain components, including the transmission and differential, are positioned at the rear. Rear-wheel drive provides better weight distribution, improved handling, and enhanced performance characteristics, making it popular in sports cars, luxury vehicles, and large trucks.

3. All-Wheel Drive (AWD) and Four-Wheel Drive (4WD):

All-wheel drive and four-wheel drive driveline configurations involve power being transmitted to all four wheels of the vehicle. These configurations provide better traction and handling in various driving conditions, particularly on slippery or off-road surfaces. AWD systems distribute power automatically between the front and rear wheels, while 4WD systems are often manually selectable and include a transfer case for shifting between 2WD and 4WD modes. AWD and 4WD configurations are commonly found in SUVs, crossovers, trucks, and off-road vehicles.

4. Front Engine, Rear-Wheel Drive (FR) and Rear Engine, Rear-Wheel Drive (RR):

In certain performance vehicles and sports cars, driveline configurations may involve a front engine with rear-wheel drive (FR) or a rear engine with rear-wheel drive (RR). FR configurations have the engine located at the front of the vehicle, transmitting power to the rear wheels. RR configurations have the engine located at the rear, driving the rear wheels. These configurations provide excellent balance, weight distribution, and handling characteristics, resulting in enhanced performance and driving dynamics.

5. Other Configurations:

There are also various specialized driveline configurations based on specific vehicle types and applications:

  • Mid-Engine: Some high-performance sports cars and supercars feature a mid-engine configuration, where the engine is positioned between the front and rear axles. This configuration offers exceptional balance, handling, and weight distribution.
  • Front-Engine, Front-Wheel Drive (FF): While less common, certain compact and economy cars employ a front-engine, front-wheel drive configuration. This layout simplifies packaging and interior space utilization.
  • Part-Time 4WD: In certain off-road vehicles, there may be a part-time 4WD driveline configuration. These vehicles typically operate in 2WD mode but can engage 4WD when additional traction is needed.

These are some of the driveline configurations commonly found in different vehicle types. The choice of driveline configuration depends on factors such as the vehicle’s intended use, performance requirements, handling characteristics, and specific design considerations.

pto shaft

How do drivelines enhance the performance of different types of vehicles?

Drivelines significantly contribute to enhancing the performance of different types of vehicles by optimizing power delivery, improving traction, and tailoring the driving characteristics to suit specific needs. Here’s a detailed explanation of how drivelines enhance performance in various vehicle types:

1. Passenger Cars:

In passenger cars, driveline configurations, such as front-wheel drive (FWD), rear-wheel drive (RWD), and all-wheel drive (AWD), play a crucial role in performance. Here’s how drivelines enhance performance in passenger cars:

  • FWD: Front-wheel drive systems provide better traction and stability, particularly in adverse weather conditions. FWD drivelines distribute weight more evenly over the front wheels, resulting in improved grip during acceleration and cornering.
  • RWD: Rear-wheel drive drivelines offer better weight distribution, allowing for improved handling and balanced performance. RWD vehicles typically exhibit better acceleration and a more engaging driving experience, especially in performance-oriented cars.
  • AWD: All-wheel drive drivelines deliver power to all four wheels, improving traction and stability in various driving conditions. AWD systems enhance performance by maximizing grip and providing optimal power distribution between the front and rear wheels.

2. Sports Cars and Performance Vehicles:

Driveline systems in sports cars and performance vehicles are designed to enhance acceleration, handling, and overall driving dynamics. Key features include:

  • Rear-Wheel Drive (RWD): RWD drivelines are often favored in sports cars for their ability to deliver power to the rear wheels, resulting in better weight transfer during acceleration and improved handling characteristics.
  • Performance-oriented AWD: Some high-performance vehicles employ advanced AWD systems that can variably distribute torque between the front and rear wheels. These systems enhance traction, stability, and cornering capabilities, allowing for superior performance on both dry and slippery surfaces.
  • Torque Vectoring: Certain driveline systems incorporate torque vectoring technology, which actively varies the torque distribution between wheels. This enables precise control during cornering, reducing understeer and enhancing agility and stability.

3. Off-Road Vehicles:

Drivelines in off-road vehicles are designed to provide exceptional traction, durability, and maneuverability in challenging terrains. Key features include:

  • Four-Wheel Drive (4WD) and All-Wheel Drive (AWD): 4WD and AWD drivelines are commonly used in off-road vehicles to improve traction on uneven surfaces. These drivelines distribute power to all wheels, allowing for better grip and enhanced off-road capability.
  • Differential Locks: Off-road drivelines often incorporate differential locks that can be engaged to lock the wheels on an axle together. This feature ensures that power is evenly distributed to all wheels, maximizing traction and overcoming challenging obstacles.
  • High Ground Clearance: Drivelines in off-road vehicles are designed to accommodate higher ground clearance, allowing for improved approach, departure, and breakover angles. This design feature enhances the vehicle’s ability to navigate over rough terrain without damaging the driveline components.

4. Trucks and Commercial Vehicles:

Drivelines in trucks and commercial vehicles are engineered to provide high torque delivery, durability, and efficiency. Key features include:

  • High Torque Handling: Drivelines in trucks and commercial vehicles are designed to handle high torque outputs from powerful engines, enabling efficient towing, hauling, and overall performance.
  • Transmission Options: Drivelines in trucks often feature transmissions with multiple gear ratios, allowing drivers to select the appropriate gear for different load conditions. This enhances performance, fuel efficiency, and overall drivability.
  • Efficient Power Transfer: Drivelines in commercial vehicles focus on maximizing power transfer efficiency, minimizing energy losses, and optimizing fuel economy. This is achieved through the use of efficient transmission designs, low-friction components, and advanced control systems.

5. Electric and Hybrid Vehicles:

Drivelines in electric and hybrid vehicles play a crucial role in delivering power from the electric motor(s) to the wheels. Key features include:

  • Instant Torque: Electric drivelines offer instant torque delivery, providing quick acceleration andresponsive performance. This enhances the driving experience and allows for swift overtaking and merging.
  • Regenerative Braking: Electric and hybrid drivelines can incorporate regenerative braking systems, which convert kinetic energy during braking into electrical energy. This improves overall efficiency and extends the vehicle’s range.
  • Multi-Motor Systems: Some electric and hybrid drivelines utilize multiple motors to drive different axles or wheels independently. This enables advanced torque vectoring and enhances handling, stability, and traction control.

These are just a few examples of how drivelines enhance the performance of different types of vehicles. Driveline configurations, technologies, and engineering considerations are tailored to each vehicle type, optimizing power delivery, handling, traction, and other performance characteristics specific to their intended use and market segment.

pto shaft

How do drivelines handle variations in torque, speed, and angles of rotation?

Drivelines are designed to handle variations in torque, speed, and angles of rotation within a power transmission system. They incorporate specific components and mechanisms that enable the smooth and efficient transfer of power while accommodating these variations. Here’s a detailed explanation of how drivelines handle variations in torque, speed, and angles of rotation:

Variations in Torque:

Drivelines encounter variations in torque when the power requirements change, such as during acceleration, deceleration, or when encountering different loads. To handle these variations, drivelines incorporate several components:

1. Clutch: In manual transmission systems, a clutch is used to engage or disengage the engine’s power from the driveline. By partially or completely disengaging the clutch, the driveline can temporarily interrupt power transfer, allowing for smooth gear changes or vehicle stationary positions. This helps manage torque variations during shifting or when power demands change abruptly.

2. Torque Converter: Automatic transmissions employ torque converters, which are fluid couplings that transfer power from the engine to the transmission. Torque converters provide a certain amount of slip, allowing for torque multiplication and smooth power transfer. The slip in the torque converter helps absorb torque variations and dampens abrupt changes, ensuring smoother operation during acceleration or when power demands fluctuate.

3. Differential: The differential mechanism in drivelines compensates for variations in torque between the wheels, particularly during turns. When a vehicle turns, the inner and outer wheels travel different distances, resulting in different rotational speeds. The differential allows the wheels to rotate at different speeds while distributing torque to each wheel accordingly. This ensures that torque variations are managed and power is distributed effectively to optimize traction and stability.

Variations in Speed:

Drivelines also need to handle variations in rotational speed, especially when the engine operates at different RPMs or when different gear ratios are selected. The following components aid in managing speed variations:

1. Transmission: The transmission allows for the selection of different gear ratios, which influence the rotational speed of the driveline components. By changing gears, the transmission adjusts the speed at which power is transferred from the engine to the driveline. This allows the driveline to adapt to different speed requirements, whether it’s for quick acceleration or maintaining a consistent speed during cruising.

2. Gearing: Driveline systems often incorporate various gears in the transmission, differential, or axle assemblies. Gears provide mechanical advantage by altering the speed and torque relationship. By employing different gear ratios, the driveline can adjust the rotational speed and torque output to match the requirements of the vehicle under different operating conditions.

Variations in Angles of Rotation:

Drivelines must accommodate variations in angles of rotation, especially in vehicles with flexible or independent suspension systems. The following components help manage these variations:

1. Universal Joints: Universal joints, also known as U-joints, are flexible couplings used in drivelines to accommodate variations in angles and misalignments between components. They allow for smooth power transmission between the drive shaft and other components, compensating for changes in driveline angles during vehicle operation or suspension movement. Universal joints are particularly effective in handling non-linear or variable angles of rotation.

2. Constant Velocity Joints (CV Joints): CV joints are specialized joints used in drivelines, especially in front-wheel-drive and all-wheel-drive vehicles. They allow the driveline to handle variations in angles while maintaining a constant velocity during rotation. CV joints are designed to mitigate vibrations, power losses, and potential binding or juddering that can occur due to changes in angles of rotation.

By incorporating these components and mechanisms, drivelines effectively handle variations in torque, speed, and angles of rotation. These features ensure smooth power transfer, optimal performance, and enhanced durability in various driving conditions and operating scenarios.

China Custom 81.39126-6044 65*172mm Drive Shaft Universal Joint Pin Drive Shaft Cross Shaft for Man Truck Spare Parts Drive LineChina Custom 81.39126-6044 65*172mm Drive Shaft Universal Joint Pin Drive Shaft Cross Shaft for Man Truck Spare Parts Drive Line
editor by CX 2024-03-09