China Hot selling 37100-04342 for CZPT Tacoma 07-14 Propshaft Tail Shaft Drive Shaft Manufacturer Drive Line

Product Description

As a professional manufacturer for propeller shaft, we have +800 items for all kinds of car, main suitable
for AMERICA & EUROPE market.

 

Our advantage:

 

1. Full range of products

2. MOQ qty: 5pcs/items

3. Delivery on time

4: Warranty: 1 YEAR

5. Develope new items: FREE

 

OEM NO. 65-5012 37100-5712 936-724
Application for CZPT Tacoma 07-14
Material SS430/45# steel 
Balancing Standrad G16, 3200rpm
Warranty One Year

For some items, we have stock, small order (+3000USD) is welcome.

 

The following items are some of propeller shafts for Toyota, If you need more information, pls contact us for ASAP.
 

Propeller Shaft for TOYOTA

  OEM

     Application         

OEM

Application

37302-20040 for TOYOTA 37110-65710 for CZPT Land Cruiser 77-80
37120-0K030 for TOYOTA 37110-65710 for CZPT Land Cruiser 81-85 
37120-30420 for TOYOTA 37140-60170 for CZPT Land Cruiser 85-87
37140-6571 for TOYOTA 37140-65710 for CZPT Land Cruiser 88-90
37140-35050 for TOYOTA 37140-6 0571 for CZPT Land Cruiser 90-06
37140-60480 for CZPT 4Runner 03-09 37140-60540 for CZPT Land Cruiser 90-07
37110-6A440 for CZPT 4Runner 03-09 37110-60450 for CZPT Land Cruiser 90-92
37140-60380 for CZPT 4Runner 10-18 37110-6571 for CZPT Land Cruiser 90-99
37140-35060 for CZPT 4Runner 88-95 37140-65710 for CZPT Land Cruiser 90-99
65-9919 for CZPT 4Runner 89-95 37110-60460 for CZPT Land Cruiser 91-97
37140-35090 for CZPT 4Runner 89-95 37110-60520 for CZPT Land Cruiser 92-97
37140-35071 for CZPT 4Runner 90-92 37110-6A620 for CZPT Land Cruiser 98-07
37140-35130 for CZPT 4Runner 96-00 37110-6A250 for CZPT Land Cruiser 99-00
936-711 for CZPT 4Runner 96-02 37110-6A310 for CZPT Land Crusier
37110-6571 for CZPT 4Runner 96-20 37110-6A610 for CZPT Land Crusier 98-02
37110-3D300 for CZPT 4Runner 96-20 65-9375 for CZPT Pickup 79-83
37110-3D060 for CZPT 4Runner 97-02 37140-35013 for CZPT Pickup 80-83
37140-35190 for CZPT 4Runner 99-02 65-9376 for CZPT Pickup 84-87
37120-30390 for CZPT Crown 65-9842 for CZPT Previa 91-97
37100-48571 for CZPT Highlander 01-07 37100-42060 for CZPT RAV4 01-05
37100-48030 for CZPT Highlander 08-14 37100-42090 for CZPT RAV4 06-16
37110-60A20 for CZPT Hilux 37110-34120 for CZPT Sequoia 07
37140-0K571 for CZPT Hilux 37100-45571 for CZPT Sienna 04-10
37100-0K181 for CZPT Hilux 37100-45571 for CZPT SIENNA 2011-2018
37140-0K030 for CZPT Hilux 05-11 936-728 for CZPT Tacoma 05-15
37100-0K091 for CZPT Hilux 05-15 37100-5712 for CZPT Tacoma 07-14
37100-0K081 for CZPT Hilux 05-15 936-708 for CZPT Tacoma 2.7L 99-04
37100-0K480 for CZPT Hilux 2571 37100-35750 for CZPT Tacoma 2004
37140-35030 for CZPT Hilux 93-95 37100-5712 for CZPT Tacoma 2011-2015
37100-0K030 for CZPT Hilux 05- 936-738 for CZPT Tacoma 4.0L 05-15
37110-60330 for CZPT HJ60 82-84 37100-3D240 for CZPT Tacoma 95-04
371002A190 for CZPT JZX100 96-00 37140-35180 for CZPT Tacoma 95-04
37140-60121 for CZPT Land Cruiser 37100-35820 for CZPT Tacoma 95-99
37140-65710 for CZPT Land Cruiser 37100-3D250 for CZPT Tacoma 98-04
37140-65710 for CZPT Land Cruiser 37100-3D260 for CZPT Tacoma 99-04
37140-60320 for CZPT Land Cruiser 936-717 for CZPT Tundra 04
37140-60330 for CZPT Land Cruiser 37100-34130 for CZPT Tundra 05-06
37140-6571 for CZPT Land Cruiser 65-9257 for CZPT Tundra 2001-2004
37140-60430 for CZPT Land Cruiser 37100-34120 for CZPT Tundra 4.7L 05-06
37140-60450 for CZPT Land Cruiser 37110-6A430 for CZPT Land Cruiser 00-02
37140-6A610 for CZPT Land Cruiser 37140-6571 for CZPT Land Cruiser 02-09
37140-60080 for CZPT Land Cruiser 37110-60A50 for CZPT Land Cruiser 07
37110-60620 for CZPT Land Cruiser  37140-60590 for CZPT Land Cruiser 08-15
37110-6A260 for CZPT Land Cruiser  37140-60090 for CZPT Land Cruiser 74-80

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Condition: New
Color: Black
Certification: ISO, IATF
Type: Propeller Shaft/Drive Shaft
Application Brand: Toyota
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What factors should be considered when designing an efficient driveline system?

Designing an efficient driveline system involves considering various factors that contribute to performance, reliability, and overall system efficiency. Here are the key factors that should be considered when designing an efficient driveline system:

1. Power Requirements:

The power requirements of the vehicle play a crucial role in designing an efficient driveline system. It is essential to determine the maximum power output of the engine and ensure that the driveline components can handle and transfer that power efficiently. Optimizing the driveline for the specific power requirements helps minimize energy losses and maximize overall efficiency.

2. Weight and Packaging:

The weight and packaging of the driveline components have a significant impact on system efficiency. Lightweight materials and compact design help reduce the overall weight of the driveline, which can improve fuel efficiency and vehicle performance. Additionally, efficient packaging ensures that driveline components are properly integrated, minimizing energy losses and maximizing available space within the vehicle.

3. Friction and Mechanical Losses:

Minimizing friction and mechanical losses within the driveline system is crucial for achieving high efficiency. Frictional losses occur at various points, such as bearings, gears, and joints. Selecting low-friction materials, optimizing lubrication systems, and implementing efficient bearing designs can help reduce these losses. Additionally, employing advanced gear designs, such as helical or hypoid gears, can improve gear mesh efficiency and reduce power losses.

4. Gear Ratios and Transmission Efficiency:

The selection of appropriate gear ratios and optimizing transmission efficiency greatly impacts driveline efficiency. Gear ratios should be chosen to match the vehicle’s power requirements, driving conditions, and desired performance characteristics. In addition, improving the efficiency of the transmission, such as reducing gear mesh losses and enhancing hydraulic or electronic control systems, can contribute to overall driveline efficiency.

5. Aerodynamic Considerations:

Aerodynamics play a significant role in a vehicle’s overall efficiency, including the driveline system. Reducing aerodynamic drag through streamlined vehicle design, efficient cooling systems, and appropriate underbody airflow management can enhance driveline efficiency by reducing the power required to overcome air resistance.

6. System Integration and Control:

Efficient driveline design involves seamless integration and control of various components. Employing advanced control systems, such as electronic control units (ECUs), can optimize driveline operation by adjusting power distribution, managing gear shifts, and optimizing torque delivery based on real-time driving conditions. Effective system integration ensures smooth communication and coordination between driveline components, improving overall efficiency.

7. Environmental Considerations:

Environmental factors should also be taken into account when designing an efficient driveline system. Considerations such as emissions regulations, sustainability goals, and the use of alternative power sources (e.g., hybrid or electric drivetrains) can influence driveline design decisions. Incorporating technologies like regenerative braking or start-stop systems can further enhance efficiency and reduce environmental impact.

8. Reliability and Durability:

Designing an efficient driveline system involves ensuring long-term reliability and durability. Selecting high-quality materials, performing thorough testing and validation, and considering factors such as thermal management and component durability help ensure that the driveline system operates efficiently over its lifespan.

By considering these factors during the design process, engineers can develop driveline systems that are optimized for efficiency, performance, and reliability, resulting in improved fuel economy, reduced emissions, and enhanced overall vehicle efficiency.

pto shaft

What safety precautions should be followed when working with driveline components?

Working with driveline components requires careful attention to safety to prevent accidents, injuries, and damage to equipment. Driveline components, such as transmissions, drive shafts, and differentials, can involve rotating parts, high torque, and heavy machinery, making it essential to follow proper safety precautions. Here are some important safety measures to consider when working with driveline components:

1. Personal Protective Equipment (PPE):

Always wear appropriate personal protective equipment, including safety glasses, gloves, and protective clothing. PPE helps protect against potential hazards such as flying debris, sharp edges, and contact with hot or moving parts. Use steel-toed safety boots to protect your feet from heavy objects or accidental impacts.

2. Lockout/Tagout:

Prior to working on driveline components, follow lockout/tagout procedures to ensure the equipment is properly shut down and isolated from its power source. Lockout/tagout involves disconnecting power, applying locks or tags to control switches, and verifying that the equipment is de-energized. This prevents accidental startup or release of stored energy that could cause serious injuries.

3. Vehicle/Equipment Stability:

Ensure that the vehicle or equipment is stable and securely supported before working on driveline components. Use appropriate jack stands or hoists to provide a stable and reliable support structure. Never rely solely on hydraulic jacks or unstable supports, as they can lead to accidents or equipment damage.

4. Proper Lifting Techniques:

When handling heavy driveline components, use proper lifting techniques to prevent strains or injuries. Lift with your legs, not your back, and get assistance when dealing with heavy or bulky components. Use mechanical lifting aids, such as hoists or cranes, when necessary to avoid overexertion or dropping components.

5. Component Inspection:

Prior to installation or maintenance, carefully inspect driveline components for any signs of damage, wear, or corrosion. Replace any worn or damaged parts to ensure safe and reliable operation. Follow the manufacturer’s guidelines and specifications for component inspection, maintenance, and replacement intervals.

6. Proper Tools and Equipment:

Use the correct tools and equipment for the job. Improper tools or makeshift solutions can lead to accidents, damaged components, or stripped fasteners. Follow the manufacturer’s recommendations for specialized tools or equipment needed for specific driveline components.

7. Follow Service Manuals and Procedures:

Refer to the relevant service manuals and follow proper procedures when working on driveline components. Service manuals provide step-by-step instructions, torque specifications, and safety precautions specific to the vehicle or equipment you are working on. Adhering to these guidelines ensures proper disassembly, installation, and adjustment of driveline components.

8. Proper Disposal of Fluids and Waste:

Dispose of fluids, such as oil or coolant, and waste materials in accordance with local regulations. Spilled fluids can create slip hazards, and improper disposal can harm the environment. Use appropriate containers and disposal methods as prescribed by local laws and regulations.

9. Training and Knowledge:

Ensure that individuals working with driveline components have received proper training and possess the necessary knowledge and skills. Inadequate training or lack of knowledge can lead to errors, accidents, or improper installation, compromising safety and performance.

10. Follow Workplace Safety Regulations:

Adhere to workplace safety regulations and guidelines established by relevant authorities. These regulations may include specific requirements for working with driveline components, such as safety standards, training requirements, and equipment certifications. Stay updated on safety regulations and ensure compliance to maintain a safe working environment.

By following these safety precautions, individuals can minimize the risk of accidents, injuries, and equipment damage when working with driveline components. Safety should always be a top priority to promote a secure and productive work environment.

pto shaft

Can you explain the components of a typical driveline and their specific roles?

A typical driveline consists of several components that work together to transmit power from the engine or power source to the driven components, enabling motion and providing torque. Each component plays a specific role in the driveline system. Here’s an explanation of the key components of a typical driveline and their specific roles:

1. Engine: The engine is the power source of the driveline system. It converts fuel energy (such as gasoline or diesel) into mechanical power by the process of combustion. The engine generates rotational power, which is transferred to the driveline to initiate power transmission.

2. Transmission: The transmission is responsible for selecting the appropriate gear ratio and transmitting power from the engine to the driven components. It allows the driver or operator to control the speed and torque output of the driveline. In manual transmissions, the driver manually selects the gears, while in automatic transmissions, the gear shifts are controlled by the vehicle’s computer system.

3. Drive Shaft: The drive shaft, also known as a propeller shaft or prop shaft, is a tubular component that transmits rotational power from the transmission to the differential or the driven components. It typically consists of a hollow metal tube with universal joints at both ends to accommodate variations in driveline angles and allow for smooth power transfer.

4. Differential: The differential is a gearbox-like component that distributes power from the drive shaft to the wheels or driven axles while allowing them to rotate at different speeds, particularly during turns. It compensates for the difference in rotational speed between the inner and outer wheels in a turn, ensuring smooth and controlled operation of the driveline system.

5. Axles: Axles are shafts that connect the differential to the wheels. They transmit power from the differential to the wheels, allowing them to rotate and generate motion. In vehicles with independent suspension, each wheel typically has its own axle, while in solid axle configurations, a single axle connects both wheels on an axle assembly.

6. Clutch: In manual transmission systems, a clutch is employed to engage or disengage the engine’s power from the driveline. It allows the driver to smoothly engage the engine’s power to the transmission when shifting gears or coming to a stop. By disengaging the clutch, power transmission to the driveline is temporarily interrupted, enabling gear changes or vehicle stationary positions.

7. Torque Converter: Torque converters are used in automatic transmissions to transfer power from the engine to the transmission. They provide a fluid coupling between the engine and transmission, allowing for smooth power transmission and torque multiplication. The torque converter also provides a torque amplification effect, which helps in vehicle acceleration.

8. Universal Joints: Universal joints, also known as U-joints, are flexible couplings used in the driveline to accommodate variations in angles and misalignments between the components. They allow for the smooth transmission of power between the drive shaft and other components, compensating for changes in driveline angles during vehicle operation or suspension movement.

9. Constant Velocity Joints (CV Joints): CV joints are specialized joints used in some drivelines, particularly in front-wheel-drive and all-wheel-drive vehicles. They enable smooth power transmission while accommodating variations in angles and allowing the wheels to turn at different speeds. CV joints maintain a constant velocity during rotation, minimizing vibrations and power losses.

10. Transfer Case: A transfer case is a component found in four-wheel-drive and all-wheel-drive systems. It transfers power from the transmission to both the front and rear axles, allowing all wheels to receive power. The transfer case usually includes additional components such as a multi-speed gearbox and differential mechanisms to distribute power effectively to the axles.

These are the key components of a typical driveline and their specific roles. Each component is crucial in transferring power, enabling motion, and ensuring the smooth and efficient operation of vehicles and equipment.

China Hot selling 37100-04342 for CZPT Tacoma 07-14 Propshaft Tail Shaft Drive Shaft Manufacturer Drive LineChina Hot selling 37100-04342 for CZPT Tacoma 07-14 Propshaft Tail Shaft Drive Shaft Manufacturer Drive Line
editor by CX 2024-05-08