Tag Archives: machinery for sale

China high quality agriculture machinery mini farm tractor mounted green machine road snow sweepers for sale agricultural parts direct

Equipment Kind: Flooring Sweeper
Relevant Industries: Producing Plant, Machinery Fix Retailers, Farms, House Use, Building functions
Online video outgoing-inspection: Supplied
Equipment Examination Report: Provided
Warranty of core factors: 1 Yr
Main Components: Bearing, Equipment
Condition: New
Gas: Diesel
Use: Snow Clearning, Sweeping highway, P series Heavy Obligation Mixer Hydraulic Geared Motor Planetary Gearbox Velocity Reducer avenue
Cleansing Process: brush
Cleaning Sort: TRACTOR PTO Pushed Clearning
Substance: Metal / Coil
Energy: 20-150hp
Dimension(L*W*H): 1330mm*900mm*1200mm
Guarantee: 1 Yr
Excess weight (KG): 550 kg
Type: Experience-on, mounted with tractors
Item title: tractor mounted street sweeper
Colour: Underneath Client’s Instruction
Purpose: Sweeping snow, street
functioning width: 1500mmm
Composition bodyweight:: 180kgs
Brush material: PP Blended Steel
brush rotation speed: a hundred and eighty rpm
Driveline specification:: Motor/pto drive
Connecting technique with tractor: 3-point suspension
Packaging Particulars: IRON Bundle
Port: HangZhou PORT

Items Description actor highway sweeper: 1. SX Collection Snow Sweeper for tractor is used for sweeping of thin layer of snow, showcased with fast velocity, higher effectiveness andeasy procedure. To distinct away deep snow, it will be far more successful to use it with each other with snow blade. It is also used in sweepingon street and floor.2. SX Series Snow Sweeper for tractor is commonly employed in highway, Custom Substantial Quality Agriculture Equipment Tractor Elements Driveline Cardan Drive PTO Shaft ground, warehouse and so forth, mostly in sweeping of skinny layer of snow,leaves, sand, courtroom and so forth.3.The snow sweeper can be matched to tractor,wheel loader, Stober K514SG3000EK501U Gear Head Velocity Reducers forklift,4.The snow sweeper driven by hydraulic output of these equipment,only tractor could be pushed by PTO.5.PP with metal wires brushes.6.Working width from 1200 to 2500mm7.Suited for cleansing highway,avenue,floor and other flat. Product Technical specs

ModelSX-150SX-one hundred sixty fiveSX-a hundred and eightySX-210
Matching tractor20-40hp40-60hp70-80hp 85hp-120hp
Hoisting device3-stage
Sweeping width (mm)1500165018002100
Brush roller length(mm)1740191021002450
Sweeping thickness(mm)0~600~600~600~60
Sweeping speed (km/h)5~155~155~150~60
Brush roller diameter(mm)5005005005~15
Sweeping angle30°30°30° K37 helical bevel gear motor 3 phase motor pace reducer gearbox large torque pace reducer gearbox 500
Max. transportation height(mm)50055060030°
Particulars Photographs Organization Profile Advise Items

Calculating the Deflection of a Worm Shaft

In this article, we’ll discuss how to calculate the deflection of a worm gear’s worm shaft. We’ll also discuss the characteristics of a worm gear, including its tooth forces. And we’ll cover the important characteristics of a worm gear. Read on to learn more! Here are some things to consider before purchasing a worm gear. We hope you enjoy learning! After reading this article, you’ll be well-equipped to choose a worm gear to match your needs.
worm shaft

Calculation of worm shaft deflection

The main goal of the calculations is to determine the deflection of a worm. Worms are used to turn gears and mechanical devices. This type of transmission uses a worm. The worm diameter and the number of teeth are inputted into the calculation gradually. Then, a table with proper solutions is shown on the screen. After completing the table, you can then move on to the main calculation. You can change the strength parameters as well.
The maximum worm shaft deflection is calculated using the finite element method (FEM). The model has many parameters, including the size of the elements and boundary conditions. The results from these simulations are compared to the corresponding analytical values to calculate the maximum deflection. The result is a table that displays the maximum worm shaft deflection. The tables can be downloaded below. You can also find more information about the different deflection formulas and their applications.
The calculation method used by DIN EN 10084 is based on the hardened cemented worm of 16MnCr5. Then, you can use DIN EN 10084 (CuSn12Ni2-C-GZ) and DIN EN 1982 (CuAl10Fe5Ne5-C-GZ). Then, you can enter the worm face width, either manually or using the auto-suggest option.
Common methods for the calculation of worm shaft deflection provide a good approximation of deflection but do not account for geometric modifications on the worm. While Norgauer’s 2021 approach addresses these issues, it fails to account for the helical winding of the worm teeth and overestimates the stiffening effect of gearing. More sophisticated approaches are required for the efficient design of thin worm shafts.
Worm gears have a low noise and vibration compared to other types of mechanical devices. However, worm gears are often limited by the amount of wear that occurs on the softer worm wheel. Worm shaft deflection is a significant influencing factor for noise and wear. The calculation method for worm gear deflection is available in ISO/TR 14521, DIN 3996, and AGMA 6022.
The worm gear can be designed with a precise transmission ratio. The calculation involves dividing the transmission ratio between more stages in a gearbox. Power transmission input parameters affect the gearing properties, as well as the material of the worm/gear. To achieve a better efficiency, the worm/gear material should match the conditions that are to be experienced. The worm gear can be a self-locking transmission.
The worm gearbox contains several machine elements. The main contributors to the total power loss are the axial loads and bearing losses on the worm shaft. Hence, different bearing configurations are studied. One type includes locating/non-locating bearing arrangements. The other is tapered roller bearings. The worm gear drives are considered when locating versus non-locating bearings. The analysis of worm gear drives is also an investigation of the X-arrangement and four-point contact bearings.
worm shaft

Influence of tooth forces on bending stiffness of a worm gear

The bending stiffness of a worm gear is dependent on tooth forces. Tooth forces increase as the power density increases, but this also leads to increased worm shaft deflection. The resulting deflection can affect efficiency, wear load capacity, and NVH behavior. Continuous improvements in bronze materials, lubricants, and manufacturing quality have enabled worm gear manufacturers to produce increasingly high power densities.
Standardized calculation methods take into account the supporting effect of the toothing on the worm shaft. However, overhung worm gears are not included in the calculation. In addition, the toothing area is not taken into account unless the shaft is designed next to the worm gear. Similarly, the root diameter is treated as the equivalent bending diameter, but this ignores the supporting effect of the worm toothing.
A generalized formula is provided to estimate the STE contribution to vibratory excitation. The results are applicable to any gear with a meshing pattern. It is recommended that engineers test different meshing methods to obtain more accurate results. One way to test tooth-meshing surfaces is to use a finite element stress and mesh subprogram. This software will measure tooth-bending stresses under dynamic loads.
The effect of tooth-brushing and lubricant on bending stiffness can be achieved by increasing the pressure angle of the worm pair. This can reduce tooth bending stresses in the worm gear. A further method is to add a load-loaded tooth-contact analysis (CCTA). This is also used to analyze mismatched ZC1 worm drive. The results obtained with the technique have been widely applied to various types of gearing.
In this study, we found that the ring gear’s bending stiffness is highly influenced by the teeth. The chamfered root of the ring gear is larger than the slot width. Thus, the ring gear’s bending stiffness varies with its tooth width, which increases with the ring wall thickness. Furthermore, a variation in the ring wall thickness of the worm gear causes a greater deviation from the design specification.
To understand the impact of the teeth on the bending stiffness of a worm gear, it is important to know the root shape. Involute teeth are susceptible to bending stress and can break under extreme conditions. A tooth-breakage analysis can control this by determining the root shape and the bending stiffness. The optimization of the root shape directly on the final gear minimizes the bending stress in the involute teeth.
The influence of tooth forces on the bending stiffness of a worm gear was investigated using the CZPT Spiral Bevel Gear Test Facility. In this study, multiple teeth of a spiral bevel pinion were instrumented with strain gages and tested at speeds ranging from static to 14400 RPM. The tests were performed with power levels as high as 540 kW. The results obtained were compared with the analysis of a three-dimensional finite element model.
worm shaft

Characteristics of worm gears

Worm gears are unique types of gears. They feature a variety of characteristics and applications. This article will examine the characteristics and benefits of worm gears. Then, we’ll examine the common applications of worm gears. Let’s take a look! Before we dive in to worm gears, let’s review their capabilities. Hopefully, you’ll see how versatile these gears are.
A worm gear can achieve massive reduction ratios with little effort. By adding circumference to the wheel, the worm can greatly increase its torque and decrease its speed. Conventional gearsets require multiple reductions to achieve the same reduction ratio. Worm gears have fewer moving parts, so there are fewer places for failure. However, they can’t reverse the direction of power. This is because the friction between the worm and wheel makes it impossible to move the worm backwards.
Worm gears are widely used in elevators, hoists, and lifts. They are particularly useful in applications where stopping speed is critical. They can be incorporated with smaller brakes to ensure safety, but shouldn’t be relied upon as a primary braking system. Generally, they are self-locking, so they are a good choice for many applications. They also have many benefits, including increased efficiency and safety.
Worm gears are designed to achieve a specific reduction ratio. They are typically arranged between the input and output shafts of a motor and a load. The two shafts are often positioned at an angle that ensures proper alignment. Worm gear gears have a center spacing of a frame size. The center spacing of the gear and worm shaft determines the axial pitch. For instance, if the gearsets are set at a radial distance, a smaller outer diameter is necessary.
Worm gears’ sliding contact reduces efficiency. But it also ensures quiet operation. The sliding action limits the efficiency of worm gears to 30% to 50%. A few techniques are introduced herein to minimize friction and to produce good entrance and exit gaps. You’ll soon see why they’re such a versatile choice for your needs! So, if you’re considering purchasing a worm gear, make sure you read this article to learn more about its characteristics!
An embodiment of a worm gear is described in FIGS. 19 and 20. An alternate embodiment of the system uses a single motor and a single worm 153. The worm 153 turns a gear which drives an arm 152. The arm 152, in turn, moves the lens/mirr assembly 10 by varying the elevation angle. The motor control unit 114 then tracks the elevation angle of the lens/mirr assembly 10 in relation to the reference position.
The worm wheel and worm are both made of metal. However, the brass worm and wheel are made of brass, which is a yellow metal. Their lubricant selections are more flexible, but they’re limited by additive restrictions due to their yellow metal. Plastic on metal worm gears are generally found in light load applications. The lubricant used depends on the type of plastic, as many types of plastics react to hydrocarbons found in regular lubricant. For this reason, you need a non-reactive lubricant.

China high quality agriculture machinery mini farm tractor mounted green machine road snow sweepers for sale     agricultural parts direct

China manufacturer China Manufacturer Tractor 4X4 Wheel 4WD Agricultural Machinery 40HP 50HP 60HP 70HP 80HP 90HP 100HP 120HP 160HP 220HP Farm Tractor for Sale near me factory

Product Description

Product Description

Features:
1.This big tractors is a multi-functional, big horsepower agricultural wheel tractors.
2.It has the characteristics of reliable structure, convenient operation, flexible steering, big traction, easy maintenance etc.
3.This series of tractors is from 110hp to 150hp.
4.It equipped with Weichai, YTO, CZPT diesel engine.
5. The tranmission box  adopt 16F+8R shuttle shifts, front wheel hydraulic steering, mechanical step shift. Brake is adopting doube plates oil bath type disc brake. 
6.Rear positioned independent PTO shaft; it is fixed with split type hydraulic suspension system, rear 3 point linkage, three-way hydraulic output valve, with sealed cabin.
7. Used for tilling rotavating, trailing, spraying, ploughing, harrowng, mower cutting, planting, CZPT husbandry etc. 

GP2204 wheel tractor specification
Item Measure specification
Whole unit Brand / GP
Model / GP2204
Type / 4×4 wheel drive
Usage / Agriculture
Dimension(L×W×H) mm 5400×2370×3270
Wheel base mm 2710
Track base( front/rear) mm 1800 ,1920 ,2020/1720-2300
The smallest clearance mm 490
Min. operational weight g 6410
Gear no. / 16F+16R
Engine Brand / YUCHAI
Type   In-line, direct injection,4-stroke,water cooled
Model / Yuchai YC6J220
Manufacturer / Guangxi Yuchai diesel engine Co.,Ltd
Aspiration way / Turbo
Cylinder no. / 6
Diameter X stroke mm 105*125
Rated power W 162
Rated speed r/min 2200
Cooling type / Water cooled
Fuel tank Capacity L 280
Steering and
brake
Steering gear type / Hydraulic steering
Brake model / wet, disc
Transmission Clutch type / Dry, dual-stage action
Gearbox shifting way / Joggle cover
Walking Tyre size( front/rear) / 18.4-26/20.8-38
Working
device
Suspension model / Rear, three-point linkages
Suspension category / III
Adjusting control / Position control, float control
Hydraulic valve / 3 sets
P.T.O. type / Rear, 6 spline
Diameter of spline mm 35
RPM r/min 760/1000
 
GP2204 wheel tractor specification
Item Measure specification
Whole unit Brand / GP
Model / GP2204
Type / 4×4 wheel drive
Usage / Agriculture
Dimension(L×W×H) mm 5400×2370×3270
Wheel base mm 2710
Track base( front/rear) mm 1800 ,1920 ,2020/1720-2300
The smallest clearance mm 490
Min. operational weight g 6410
Gear no. / 16F+16R
Engine Brand / YUCHAI
Type   In-line, direct injection,4-stroke,water cooled
Model / Yuchai YC6J220
Manufacturer / Guangxi Yuchai diesel engine Co.,Ltd
Aspiration way / Turbo
Cylinder no. / 6
Diameter X stroke mm 105*125
Rated power W 162
Rated speed r/min 2200
Cooling type / Water cooled
Fuel tank Capacity L 280
Steering and
brake
Steering gear type / Hydraulic steering
Brake model / wet, disc
Transmission Clutch type / Dry, dual-stage action
Gearbox shifting way / Joggle cover
Walking Tyre size( front/rear) / 18.4-26/20.8-38
Working
device
Suspension model / Rear, three-point linkages
Suspension category / III
Adjusting control / Position control, float control
Hydraulic valve / 3 sets
P.T.O. type / Rear, 6 spline
Diameter of spline mm 35
RPM r/min 760/1000
 

How to Choose the Right Worm Shaft

You might be curious to know how to choose the right Worm Shaft. In this article, you will learn about worm modules with the same pitch diameter, Double-thread worm gears, and Self-locking worm drive. Once you have chosen the proper Worm Shaft, you will find it easier to use the equipment in your home. There are many advantages to selecting the right Worm Shaft. Read on to learn more.
worm shaft

Concave shape

The concave shape of a worm’s shaft is an important characteristic for the design of a worm gearing. Worm gearings can be found in a wide range of shapes, and the basic profile parameters are available in professional and firm literature. These parameters are used in geometry calculations, and a selection of the right worm gearing for a particular application can be based on these requirements.
The thread profile of a worm is defined by the tangent to the axis of its main cylinder. The teeth are shaped in a straight line with a slightly concave shape along the sides. It resembles a helical gear, and the profile of the worm itself is straight. This type of gearing is often used when the number of teeth is greater than a certain limit.
The geometry of a worm gear depends on the type and manufacturer. In the earliest days, worms were made similar to simple screw threads, and could be chased on a lathe. During this time, the worm was often made with straight-sided tools to produce threads in the acme plane. Later, grinding techniques improved the thread finish and reduced distortions resulting from hardening.
When a worm gearing has multiple teeth, the pitch angle is a key parameter. A greater pitch angle increases efficiency. If you want to increase the pitch angle without increasing the number of teeth, you can replace a worm pair with a different number of thread starts. The helix angle must increase while the center distance remains constant. A higher pitch angle, however, is almost never used for power transmissions.
The minimum number of gear teeth depends on the angle of pressure at zero gearing correction. The diameter of the worm is d1, and is based on a known module value, mx or mn. Generally, larger values of m are assigned to larger modules. And a smaller number of teeth is called a low pitch angle. In case of a low pitch angle, spiral gearing is used. The pitch angle of the worm gear is smaller than 10 degrees.
worm shaft

Multiple-thread worms

Multi-thread worms can be divided into sets of one, two, or four threads. The ratio is determined by the number of threads on each set and the number of teeth on the apparatus. The most common worm thread counts are 1,2,4, and 6. To find out how many threads you have, count the start and end of each thread and divide by two. Using this method, you will get the correct thread count every time.
The tangent plane of a worm’s pitch profile changes as the worm moves lengthwise along the thread. The lead angle is greatest at the throat, and decreases on both sides. The curvature radius r” varies proportionally with the worm’s radius, or pitch angle at the considered point. Hence, the worm leads angle, r, is increased with decreased inclination and decreases with increasing inclination.
Multi-thread worms are characterized by a constant leverage between the gear surface and the worm threads. The ratio of worm-tooth surfaces to the worm’s length varies, which enables the wormgear to be adjusted in the same direction. To optimize the gear contact between the worm and gear, the tangent relationship between the two surfaces is optimal.
The efficiency of worm gear drives is largely dependent on the helix angle of the worm. Multiple thread worms can improve the efficiency of the worm gear drive by as much as 25 to 50% compared to single-thread worms. Worm gears are made of bronze, which reduces friction and heat on the worm’s teeth. A specialized machine can cut the worm gears for maximum efficiency.

Double-thread worm gears

In many different applications, worm gears are used to drive a worm wheel. These gears are unique in that the worm cannot be reversed by the power applied to the worm wheel. Because of their self-locking properties, they can be used to prevent reversing motion, although this is not a dependable function. Applications for worm gears include hoisting equipment, elevators, chain blocks, fishing reels, and automotive power steering. Because of their compact size, these gears are often used in applications with limited space.
Worm sets typically exhibit more wear than other types of gears, and this means that they require more limited contact patterns in new parts. Worm wheel teeth are concave, making it difficult to measure tooth thickness with pins, balls, and gear tooth calipers. To measure tooth thickness, however, you can measure backlash, a measurement of the spacing between teeth in a gear. Backlash can vary from one worm gear to another, so it is important to check the backlash at several points. If the backlash is different in two places, this indicates that the teeth may have different spacing.
Single-thread worm gears provide high speed reduction but lower efficiency. A multi-thread worm gear can provide high efficiency and high speed, but this comes with a trade-off in terms of horsepower. However, there are many other applications for worm gears. In addition to heavy-duty applications, they are often used in light-duty gearboxes for a variety of functions. When used in conjunction with double-thread worms, they allow for a substantial speed reduction in one step.
Stainless-steel worm gears can be used in damp environments. The worm gear is not susceptible to rust and is ideal for wet and damp environments. The worm wheel’s smooth surfaces make cleaning them easy. However, they do require lubricants. The most common lubricant for worm gears is mineral oil. This lubricant is designed to protect the worm drive.
worm shaft

Self-locking worm drive

A self-locking worm drive prevents the platform from moving backward when the motor stops. A dynamic self-locking worm drive is also possible but does not include a holding brake. This type of self-locking worm drive is not susceptible to vibrations, but may rattle if released. In addition, it may require an additional brake to keep the platform from moving. A positive brake may be necessary for safety.
A self-locking worm drive does not allow for the interchangeability of the driven and driving gears. This is unlike spur gear trains that allow both to interchange positions. In a self-locking worm drive, the driving gear is always engaged and the driven gear remains stationary. The drive mechanism locks automatically when the worm is operated in the wrong manner. Several sources of information on self-locking worm gears include the Machinery’s Handbook.
A self-locking worm drive is not difficult to build and has a great mechanical advantage. In fact, the output of a self-locking worm drive cannot be backdriven by the input shaft. DIYers can build a self-locking worm drive by modifying threaded rods and off-the-shelf gears. However, it is easier to make a ratchet and pawl mechanism, and is significantly less expensive. However, it is important to understand that you can only drive one worm at a time.
Another advantage of a self-locking worm drive is the fact that it is not possible to interchange the input and output shafts. This is a major benefit of using such a mechanism, as you can achieve high gear reduction without increasing the size of the gear box. If you’re thinking about buying a self-locking worm gear for a specific application, consider the following tips to make the right choice.
An enveloping worm gear set is best for applications requiring high accuracy and efficiency, and minimum backlash. Its teeth are shaped differently, and the worm’s threads are modified to increase surface contact. They are more expensive to manufacture than their single-start counterparts, but this type is best for applications where accuracy is crucial. The worm drive is also a great option for heavy trucks because of their large size and high-torque capacity.